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PREFACE

The Clean Air Act Amendments of 1990 established a
control program for sources of 188 “hazardous air pollutants, or
air toxics” that may pose a risk to public health. With the
passage of these Amendments, Congress established the
Mickey Leland National Urban Air Toxics Research Center
(NUATRC) to develop and direct and environmental health
research program that would promote a better understanding of
the risks posed to human health by the presence of these toxic
chemicals in urban air.

Established as a public/private research organization, the
Center's research program is developed with guidance and
direction from scientific experts from academia, industry, and
government and seeks to fill gaps in scientific data. These
research results are intended to assist policy makers in
reaching sound environmental health decisions. The NUATRC
accomplishes its research mission by sponsoring research on
human health effects of air toxics at universities and research
institutions and by publishing research findings in its
“NUATRC Research Reports,” thereby contributing meaningful
and relevant data to the per-reviewed literature.

In December 2003, the Center released RFA 2003-01,
“NUATRC Small Grants Program: Exposures and Health Effects
of Urban Air Toxics,” which encouraged investigators to
develop and conduct short-term research projects dealing with
non-carcinogenic health effects of air toxics in human subjects.
These projects were envisioned as pilot projects that could
serve as a basis for more extended future research. Projects that
have an interdisciplinary approach, projects that test new
techniques, and innovative or high-risk projects were strongly
encouraged.  

The Center was particularly interested in innovative projects
in the area of exposure and health effects of urban air toxics in
human subjects. The studies were to be hypothesis-driven and
designed to test the relationship between exposures to air
toxics under environmentally relevant conditions and health
effects in urban communities. Dr. Winifred Hamilton of Baylor
College of Medicine and co-investigators at Baylor, University
of Houston, University of Texas Health Science Center -
Houston, and the U.S. Environmental Protection Agency were
awarded a two-year contract to conduct the research project,
“A Pilot Geospatial Analysis of Exposure to Air Pollutants
(with Special Attention to Air Toxics) and Hospital Admissions
in Harris County, Texas.”

The study investigators' research in this pilot study was
organized around the hypothesis that the rate of Harris County
residents hospitalized during the study period differs
geographically among 337 4x4 kilometer domains, and
correlates with exposure to air pollutants estimated using the

EPA's Community Multiscale Air Quality with Air Toxics
(CMAQ-AT) model. They used the CMAQ model and model
inputs (meteorology and emissions) developed by the
University of Houston as part of previous ozone modeling for
Houston's TexAQS field study to estimate pollutant
concentrations; this project then used ArcGIS (ESRI, Redlands,
CA) geospatial modeling software to extract and/or combine
the estimated exposure, admissions, and demographic data for
each of the domains for subsequent analysis. The investigators
hypothesized that the CMAQ model would allow air toxic
concentrations to be determined to a more comprehensive
extent than can be accomplished using fixed site monitors.

According to the investigators, the primary goal of this pilot
study was to advance the identification of potential “hot spots”
of disproportionate exposure and health effects by (1) using an
air pollution simulation model to estimate exposure fields, and
(2) utilizing actual health endpoints to predict risk. The
investigators used simulated hourly values from MM5 and
CMAQ models for a 90-day period in the year 2000 for 25
meteorological and air pollutant variables including 16 air
toxics for 337 4 X 4-km cells in Harris County, Texas. Each cell
was characterized by the simulated output, hospital
admissions rates by discharge diagnosis (cardiovascular,
respiratory, or either), and seven demographic variables. The
investigators explored principal components analysis and
various averaging schema. They used a linear mixed effects
regression model to generate regression coefficients to calculate
predicted admission rates and used geospatial techniques to
visualize potential “hot spots.” 

Despite generating the best emissions and meteorological
data that could be produced for the study time period, the
model-predicted pollutant concentrations proved not to be
adequate for the objectives of this health effects study. Thus,
the investigators did not provide results relating model-
predicted exposure to health endpoints. Instead, the report
focuses on methodology and delineates areas that need further
development. 

A “Statement by the NUATRC Scientific Advisory Panel” (or
the “Statement”) precedes this report, and highlights some of
the strengths and limitations of this research so that, once
refined, this approach might be used for areas of the country
with significant pollutant gradients, such as Houston, TX with
localized areas of high pollution or “hot spots.”

Each time a NUATRC-funded study is completed, the
Investigators submit a draft final research report. The draft final
report undergoes an extensive evaluation procedure that asses
the strengths and limitations of the study and comments on
clarity of the presentation, data quality, appropriateness of
study design, data analysis, and interpretation of the study
findings. The objective of the review process is to ensure that
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the Investigator's report is complete, accurate, and clear.
The evaluation first involves an external review by a team of

three reviewers, including a biostatistician. The reviewers'
comments are then considered by members of the Scientific
Advisory Panel (SAP). The comments of the external reviewers
and the SAP members are then provided to the Investigator. In
its communication with the Investigator, the SAP may suggest
alternative interpretations for the results, and also discuss new
insights that the study may offer to the scientific literature. The
Investigator has the opportunity to exchange comments with
the SAP and, if necessary, revise the draft report. The SAP may
also publish its own comments regarding the strengths of the
study as well as alternate interpretations of the study results in
the “Statement by the NUATRC SAP” (or the “Statement”). In
accordance with NUATRC policy, the Board of Directors
approves the publication of the revised final report after the
recommendation of the SAP. The research presented in the
NUATRC Research Reports represents the work of its
investigators; the comments presented in the “Statement”
represent the views of the SAP.

The NUATRC appreciates hearing comments from its readers
from industry, academic institutions, government agencies,
and the public about the usefulness of the information
contained in these reports, and about other ways that the
NUATRC may effectively serve the needs of these groups. The
NUATRC wishes to express its sincere appreciation to Dr.
Winifred Hamilton and her research team, the SAP, and
external peer-reviewers whose expertise, diligence, and
patience have facilitated the successful completion of this
report.

STATEMENT OF THE NUATRC SCIENTIFIC ADVISORY
PANEL

Statement by the Scientific Advisory Panel of the Mickey
Leland National Urban Air Toxics Research Center
Regarding the Research Report, “A Pilot Study Using EPA's
CMAQ Model and Hospital Admission Data to Identify
Multipollutant 'Hot Spots' of Concern in Harris County,
Texas.”

BACKGROUND

In 2003, the Center released RFA 2003-01, “NUATRC
Small Grants Program: Exposures and Health Effects of
Urban Air Toxics.” The primary objective of the RFA was to
encourage investigators to develop and conduct innovative
short-term research projects dealing with non-carcinogenic
health effects of air toxics in human subjects. The projects

were envisioned as pilot projects that could serve as a basis
for more extended future research. Dr. Winifred Hamilton of
Baylor College of Medicine and co-investigators at Baylor,
University of Houston, University of Texas Health Science
Center - Houston, and the U.S. Environmental Protection
Agency were awarded a two-year contract to conduct the
research project, “A Pilot Geospatial Analysis of Exposure
to Air Pollutants (with Special Attention to Air Toxics) and
Hospital Admissions in Harris County, Texas.”

RESEARCH APPROACH

The study investigators' research in this pilot study was
organized around the stated hypothesis that the rate of
Harris County residents hospitalized during the study
period differs geographically among 337 4x4 kilometer
domains, and correlates with exposure to air pollutants
estimated using the EPA's Community Multiscale Air
Quality with Air Toxics (CMAQ-AT) model and model
inputs (meteorology and emissions) developed by the
University of Houston as part of previous ozone modeling
for Houston's TexAQS field study. This project then used
ArcGIS (ESRI, Redlands, CA) geospatial modeling software
to extract and/or combine the estimated exposure,
admissions, and demographic data for each of the domains
for subsequent analysis. The investigators hypothesized
that the CMAQ model would allow air toxic concentrations
to be determined to a more comprehensive extent than can
be accomplished using fixed site monitors.

According to the investigators, the primary goal of this
pilot study was to advance the identification of potential
“hot spots” of disproportionate exposure and health effects
by (1) using an air pollution simulation model to estimate
exposure fields, and (2) utilizing actual health endpoints to
predict risk.  The investigators used simulated hourly
values from MM5 and CMAQ models for a 90-day period in
the year 2000 for 25 meteorological and air pollutant
variables including 16 air toxics for 337 4 X 4-km cells in
Harris County, Texas. Each cell was characterized by the
simulated output, hospital admissions rates by discharge
diagnosis (cardiovascular, respiratory, or either), and seven
demographic variables. The investigators explored
principal components analysis and various averaging
schema. They used a linear mixed effects regression model
to generate regression coefficients to calculate predicted
admission rates and used geospatial techniques to visualize
potential “hot spots.” 

Despite generating the best emissions and meteorological
data that could be produced for the study time period, the
model-predicted pollutant concentrations proved not to be
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adequate for the objectives of this health effects study. Thus,
the investigators did not provide results relating model-
predicted exposure to health endpoints. Instead, the report
focuses on methodology and delineates areas that need
further development. 

The comments of the NUATRC Scientific Advisory Panel
below highlights some of the strengths and limitations of
this research so that, once refined, this approach might be
used for areas of the country with significant pollutant
gradients, such as Houston, TX with localized areas of high
pollution or “hot spots.”

COMMENTS OF THE NUATRC SCIENTIFIC ADVISORY PANEL

The authors are to be commended for taking on the
challenge of applying a large-scale Eulerian air quality
model (CMAQ) to the problem of variable health effects
incidence in a complex urban area (Houston, TX). 

Strengths:

•The development of hospital admissions data as a measure
of variable health effects was a particular strong point of
the study.

• The investigators provide a thorough explanation for how
these data were generated and describe the issues and
problems of organizing these data in a system for spatial
and temporal analyses.

Limitations:

The conclusions drawn from the study are fraught with
methodological and interpretation challenges as they relate
to evaluation of the model to develop the needed exposure
estimates.  The authors repeat in several places that their
chief numerical conclusions are not included in the report
because of “concerns” about the exposure estimates
computed from the CMAQ output and the instability of the
resultant risk estimates. However, the authors have not
adequately addressed these issues, leaving the reader to
evaluate its conclusions and interpretation based only on
the summary of methods and application.

Specifically,

• The modeling system (formulation and inputs) was not
evaluated for the use intended in this application:
predicting the atmospheric concentrations needed to
analyze the relationship between exposure and hospital
admissions. The authors attempt to use a long-term

average (90-day) concentration of air pollutants as the
estimate for chronic exposures that could trigger hospital
admissions. The authors acknowledge that taking such an
average in each 4x4 cell in the modeled domain for Harris
County enfolds substantial error in the model predictions
for reasons like the well-known and characterized under-
performance of CMAQ for ozone at night. But the more
useful response by the authors would have been to obtain
an appropriate exposure time from the model, by looking
throughout the domain at finer spatial scales for patterns
and trends which would then be traceable at that scale to
the model-predicted pollutant concentrations.

• The authors claim, without attribution to any literature,
that lags of up to 7 days are important in air pollution
health effects studies (the usual lag structures are 0-3
days), but do not explain why a 90-day mean is
significant for their proposed 7-day lag. 

• Using a 90-day average, the authors are attempting to
predict hospital admissions by comparing model
estimates to only four ambient VOC measurement sites
and two PM2.5 measurements in the entire domain.
Additionally, the predictions versus the measurements
are compared with observations of only one of the
hazardous air pollutants, benzene.

• Overall, the 90-day averages were biased sufficiently that
the model output could not reliably estimate spatial
locations of “hot spots.” This pilot study did not provide
an adequate test of the CMAQ model for predicting
atmospheric concentrations with the characteristics
needed for studying relationships between air toxics
exposures and health effect differences spatially across a
modeled domain.

Conclusions:

Despite its limitations, this work makes useful
contributions to the field: 

• It demonstrates the promise and pitfalls of using CMAQ
in an epidemiological study, and provides valuable
lessons for other researchers interested in this approach.
CMAQ is a complex model, and atmospheric chemistry -
particularly in Houston - is extremely complicated. There
are problems with bringing CMAQ down to a 4-km grid;
other research teams need to be cautious about taking
larger grid models down to a finer scale. 

• The study showed that investigators interested in this
type of work need to consider the following issues related
to the use of models:
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1. The most important environmental parameter(s) the
model must predict and the consequences if the
model is not adequate in predicting this parameter; 

2. The requirements for operating the model;
3. The source and quality of inputs;
4. The formulation and completeness of model

components;
5. The personnel, computational, and storage demands

of the model;
6. The duration of total model effort;
7. The identification of criteria of performance that

modeling system needs to meet to be adequate for the
work; and 

8. The establishment of fitness of the air quality
management system's output for use in the effort (e.g.
health effects assessment).

The investigators showed that using this model in an
epidemiological application is expensive and time
consuming, and leads to relatively uncertain results.
Furthermore, this study suggests that for this type of
research to succeed, there must be detailed discussions
between the modeler, who is responsible for producing
estimates of  airborne concentrations and exposures, and
epidemiologists to ensure that the accuracy of the estimates
will be consistent with and sufficient for the intended
objective of the study. 

In conclusion, this pilot study has not produced reliable
results concerning the relationship between pollution hot
spots and health effects. Though the report follows, we
caution the reader that interpretation of results concerning
the hot spots and health effects relationship is unwarranted.
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ABSTRACT

Residents in certain geographical locations, such as near
freeways or industrial facilities, are likely to be exposed to
heavier loads of multiple air pollutants than those farther
from such sources. Such “hot spots” are poorly delineated
by monitor-based studies, and few attempts have been made
to examine potential associations between modeled output
and actual health effects. In this pilot geospatial study we
used simulated hourly values from the MM5 and
Community Multiscale Air Quality (CMAQ) models for a
90-day period in 2000 for 25 meteorological and air
pollution variables, including 16 air toxics, for 337 4 x 4-km
cells in Harris County, Texas. Each cell was characterized by
the simulated output; hospital admission rates by discharge
diagnosis (cardiovascular, respiratory, or either); and seven
demographic variables. Principal components analysis and
various averaging schema were explored. A linear mixed-
effects regression model was used to generate regression
coefficients from which to create predictive “hot spot”
maps. Although preliminary findings suggested spatial
differences in predicted hospitalization rates, the pilot
study raised significant concerns about the ability of the
current model to usefully estimate exposure and other
methodological issues that need to be addressed. The
methodology, problems encountered, and potential next
steps are discussed.

INTRODUCTION

OVERVIEW 

A number of monitoring and/or exposure assessment
studies have documented that some neighborhoods are
regularly exposed to higher levels of multiple air pollutants
than are other neighborhoods. In many instances, other
environmental and demographic stressors such as
contaminated water, lead-based paint, poverty, and poor
nutrition may add to the vulnerability of residents in these
neighborhoods to health problems associated with poor air
quality. This awareness led to, in 1994, Executive Order
12898 that, among other provisions, required (1) achieving
environmental justice to be part of the mission of all federal
agencies and (2) “identifying and addressing, as
appropriate, disproportionately high and adverse human
health or environmental effects . . . [in] minority and low-
income populations” (U.S. Office of the President, 1994). 

A number of challenges are faced by such “hot spot”
efforts including lack of geographical coverage in monitor-

based studies, concern about the use of monitored or
modeled data as surrogates for personal exposure, the
problem of establishing guidelines for individual pollutants
when exposure and health effects exist in a multipollutant
environment, and numerous statistical challenges
including ecologic bias, uncertainty, and collinearity,
especially in multipollutant spatial models. These
challenges are compounded when actual health effects,
such as hospital admissions for cardiovascular or other
diseases, are included in the study design. 

In this pilot study, we examined the use of simulated
concentrations of multiple air pollutants of particular
concern in the Houston area, including five criteria air
pollutants (CAPs) and 16 hazardous air pollutants (HAPs),
as well as two meteorological variables (temperature and
relative humidity), to assess the potential effects of spatial
differences in the level of chronic exposure to these
variables on hospital admissions for cardiovascular and
respiratory causes, controlling for seven demographic
variables. A multivariate linear mixed-effects model (LMM)
was used to generate regression coefficients that, although
unstable for assessing the contribution of individual
meteorological and pollutant variables due to correlation
between the multiple pollutants in the final models, were
used to calculate predicted rates of admission for
respiratory and cardiovascular disease, adjusted for
significant meteorological, demographic, and pollutant
variables. These predicted rates were then used to create
“hot spot” maps identifying areas of potential concern. For
this pilot study, we used a 4 x 4-km grid that resulted in 337
areas for analysis, and we used MM5 and several
adaptations of the U.S. EPA's three-dimensional
photochemical air quality model, the Community Multi-
Scale Air Quality (CMAQ) model, to simulate the
meteorological and pollutant values.

Although we are encouraged by numerous aspects of this
pilot study, the effort also generated a number of significant
concerns and challenges that must be addressed in future
work. For example, are the current inventories sufficient for
this level of resolution? What is the appropriate averaging
time for the meteorological and pollutant variables,
especially in a multipollutant model in which most of the
pollutants have significantly different daily temporal
profiles? Is principal components analysis (PCA) useful in
reducing the number of variables and problems with
collinearity in the models? Is CMAQ, although developed
as a multipollutant model but to some degree optimized to
predict ozone (O3) formation for regulatory decision-
making, capable of simulating human exposure with
sufficient accuracy to be useful in such a health-based
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model? Can the differing levels of uncertainty in a grid-
based model with significant population gradients be
adequately addressed statistically? 

These questions and various difficulties encountered
during this pilot study have led us to focus in this report
primarily on the methods used, problems encountered and
potential next steps, choosing not to include the results of
the regression models except in a general discussion of the
chronology of the steps we took to develop maps of
predicted rates of hospitalization based on simulated
exposure to ambient air pollution and various demographic
factors that influence vulnerability. In addition to the
methodology, including data collection and preparation for
the analyses, this report provides an overview of the use of
models in air pollution and health effects studies, as well as
a number of approaches that might be used to improve
subsequent efforts.

URBAN POLLUTION AND HEALTH EFFECTS STUDIES

Time-Series and Case-Crossover Studies

Many air pollution and health effects studies done in
urban areas have used a retrospective time-series or case-
crossover design. Most of these studies have focused on
CAPs, particularly O3 and particulate matter (PM), although
nitrogen oxides (NOx) and carbon monoxide (CO) are
included in some of the study designs, some of which use
innovative statistical approaches to reduce the effect of
collinearity introduced by additional pollutants on the
effect estimates.

For measuring exposure, retrospective time-series or case-
crossover studies generally use a single daily mean
concentration of the pollutants of interest that is obtained
from a centrally placed monitor or calculated from a
number of fixed-site monitors in the community (Alberdi
Odriozola et al., 1998; Barnett et al., 2006; Burnett et al.,
1999; Dominici et al., 2003; Dominici et al., 2004; Ko et al.,
2007; Lee et al., 2007; Lee et al., 2006; Lin et al., 2003; Magas
et al., 2007; Medina-Ramon et al., 2006; Morgan et al., 1998;
Poloniecki et al., 1997; Saez et al., 1999; Wellenius et al.,
2006; Yang and Chen, 2007; Yang et al., 2004; Zanobetti et
al., 2003). Hospital admissions, emergency room visits, or
death are the most commonly used health endpoints, in
part because of the availability of relatively large datasets
that are needed to assess day-to-day variability in exposure
and response. These studies effectively use each “case” as
its own control, largely eliminating personal confounders
such as smoking and education. For this reason, such
studies are being increasingly refined and are particularly
useful as a measure of acute effects although some delayed

effects can also be captured by integrating longer lag times
into the design (Martins et al., 2006; Neuberger et al., 2007;
Zanobetti and Schwartz, 2008). However, using such a
global measure of exposure largely ignores the likelihood of
significant spatial variations in pollutant levels and the
disproportionate burden of such “hot spots” of exposure
and/or susceptibility within urban areas. This is especially
important for HAPs, also referred to as air toxics, which
tend to be localized.

Zanobetti, Bell, Dominici and others have more recently
conducted comparisons between cities using time-series
methodology that attempted to look at community
characteristics  (Bell and Dominici, 2008; Jerrett et al., 2007;
Zanobetti et al., 2000), responding in part to questions about
environmental justice issues. Bell and Dominici's study
published in 2008, for example, examined effect
modification by community characteristics on the short-
term effects of ozone on mortality in 98 U.S. communities.
For exposure, the investigators used daily average weather
data for each community from the National Climatic Data
Center and concentrations of O3 and PM from the U.S.
Environmental Protection Agency Aerometric Information
Retrieval Service (EPA AIRS). Data from multiple monitors
within each community were averaged, using a 10% trim to
avoid the influence of outliers, for a single mean value for
each city (Bell and Dominici, 2008). Bell and Dominici
found that community-level characteristics modified the
relation between O3 and mortality, with higher effect
estimates associated with higher unemployment, being
Black, increased use of public transportation, and a lower
percentage of households with central air conditioning.
However, as the authors note, this study design does not
address intra-community “hot spots,” which is where most
environmental justice inequities exist-at a local level.

Prospective Cohort Studies

Several major prospective studies, including the six-city
(Dockery et al., 1993; Krewski et al., 2003; Laden et al.,
2006) and American Cancer Society (Krewski et al., 2003;
Pope et al., 2002; Pope et al., 2004) studies, have examined
intercity differences and are able to control for various
confounders, such as education, smoking, and body-mass
index. Because of the potential importance of these studies
for establishing National Ambient Air Quality Standards
(NAAQS) for PM, the data collected for these two studies
were subsequently re-analyzed by another team of
researchers (Health Effects Institute, 2000). The re-analysis
confirmed the findings of the original studies, i.e., intercity
differences in mortality correlate with different levels of
pollution. Both studies focused primarily on particulate
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matter < 2.5 microns in diameter (PM2.5) as the primary
pollutant of interest. These studies, however, also do not
address intra-city “hot spots,” relying in the first study
primarily on a centrally located fixed-site monitor and in
the second on the mean of all monitors for each city. 

Spatial Studies

Findings from the previously discussed study designs
have been reproduced in other studies and, collectively,
have played key roles in the regulatory process, often
supporting a tightening of the NAAQS to better protect
public health. Nevertheless, none of them provides
information that directly enables researchers, clinicians, or
policy makers to identify particular geographical areas of
disproportionate exposure and health effects within urban
areas for which, perhaps, specific local interventions might
make a measurable difference. In addition, these studies
seldom include any HAPs. The reasons for this include
limited data, low concentrations that increase the
likelihood of measurement error, the lack of health-based
standards to drive research, and the fact that ambient HAP
concentrations tend to be more localized than do CAP
concentrations and are therefore less amenable to city-wide
averaging. 

Except for occasional limited investigations into disease
clusters, few spatial exposure-disease analyses within
urban areas exist, in part because of the difficulty in
generalizing from group data (Greenland, 2001). However, a
growing awareness that certain segments of many urban
populations are disproportionately exposed to
environmental stressors (American Lung Association, 2001;
Bullard, 1983; Maantay, 2007; Morello-Frosch et al., 2002;
Woodruff et al., 2003; Zanobetti and Schwartz, 2000) and
improvements in geospatial and statistical techniques have
recently led to increased research in this arena (Briggs,
2005; Chen et al., 2007; Dolinoy and Miranda, 2004; Jerrett
et al., 2005; Liao et al., 2006; Maheswaran et al., 2006;
Nuckols et al., 2004; Scoggins et al., 2004; Yanosky et al.,
2008; Zandbergen and Chakraborty, 2006; Zhang, 2006;
Zhou and Levy, 2007). In their spatial study of intra-city air
pollution and mortality in Los Angeles using available
monitoring data and various spatial interpolation
techniques, Jerrett and associates, for example, observed
within-city health effects to be nearly three times greater
than suggested by models that compared metropolitan areas
and relied on community averages as the exposure estimate
(Jerrett et al., 2005). Again, this suggests that more localized
exposure assessments are needed.

One immediate problem confronting spatial studies in

most urban areas is a lack of exposure data, as fixed-site
monitors seldom provide sufficient geographical coverage.
Mathematical techniques can be used to expand the
usefulness of data from fixed site monitors (Andria et al.,
2008; Brown et al., 1994). For example, application of the
Kalman filter to measured concentrations of a single
pollutant at a fixed-site monitor can improve the quality of
the data for exposure estimation by reducing the
contribution of noise and reconstructing missing data
points. Kriging, often in combination with the Kalman filter,
is a geostatistical interpolation technique that can be used to
predict concentrations of a single pollutant across a limited
geographical territory based on measurements obtained
from a set of fixed monitors. The spatial estimations
produced by the kriging technique can further be adjusted
by a number of factors, such as meteorological conditions,
land-use topology, and even characteristics of the emission
sources (e.g., industrial or vehicular), but are nevertheless
dependent on sufficient and well placed monitors, each of
which measures a meaningful set of pollutants, to produce
useful interpolated concentrations for estimating exposure.
For financial and other reasons, this is seldom the case.

More comprehensive exposure assessment, such as
personal monitoring (Payne-Sturges et al., 2004) or
community-based saturation monitoring (Zhu et al., 2008),
is generally done at a small scale and is usually not easily
generalizable to other communities, although the growing
body of such information is particularly valuable for future
efforts to refine hybrid approaches to better estimate local-
scale exposure. Currently many community efforts that
attempt to define potential “hot spots” utilize industry-
reported levels of emissions, such as are provided by the
Toxic Release Inventory (TRI), or composite inventories of
emissions prepared by state or national agencies, such as
the Texas Emissions Inventory (TEI) or National Emissions
Inventory (NEI). These latter inventories include, with
varying degrees of resolution, industrial, mobile, and area
emissions, and are regularly updated. They are often used
in models to better understand CAP emissions and
pollutant transport, to develop pollution-reduction
strategies for areas in nonattainment for one or more of the
CAPs, and to help define areas of potential concern near
major emission sources. 

One spatial design-the proximity analysis-compares some
measure of health effects, such as hospital admissions or
respiratory symptoms, in areas near and distant to a known
pollution source, such as a major highway or large
industrial emitter (Blumenstock et al., 2000; Maheswaran
and Elliott, 2003; Perlin et al., 2001; Sheppard et al., 1999).
Another design compares health effects in defined

11

Winifred J. Hamilton et al



geographical areas, such as census tracts, with some
measure of exposure, such as nearest monitor or number of
sources (Buckeridge et al., 2002; Elliott et al., 2000). These
designs, however, tend to be limited to a single pollutant or
source category and therefore are unlikely to well represent
health risk, although they can be very useful for initially
identifying key exposure or health disparities, which can
then be targeted for additional scrutiny.

In addition and as noted earlier, most studies have
focused on CAPs, especially O3, PM2.5, CO, NO2, and sulfur
dioxide (SO2), for which there are NAAQS. However, air
toxics are also associated with health effects, including
acute effects such as eye and skin irritation, nausea,
headache, and difficulty in breathing, (Brunekreef and
Holgate, 2002; Burnett et al., 1999; Leikauf, 2002;
Moolgavkar, 2000; Morello-Frosch et al., 2000; Morgan et
al., 1998; Morris, 2001; South Coast Air Quality
Management District, 1999; Weisel, 2002), as well as long-
term effects, including cardiovascular damage, respiratory
scarring, immune dysfunction, asthma, cancer, and
Parkinson's disease (Herbert et al., 2006; Jacquez and
Greiling, 2003; Morello-Frosch et al., 2000; South Coast Air
Quality Management District, 1999; Woodruff et al., 1998).

The inclusion of a larger number of pollutants, including
CAPs and HAPs, raises special challenges in
epidemiological models in part because of correlation
between many pollutants, which can create problems in
interpreting results. At the same time exposure to
environmental hazards and vulnerability to health effects
are complexly multifactorial and most current study
designs are limited in their ability to address this
complexity. It is interesting to note, for example, that the
color-coded U.S. Air Quality Index (AQI), which is used to
issue health-based advisories based on modeled air quality
forecasts and/or measured concentrations, is capable of
only addressing a single NAAQS pollutant at a time.
Although there has been discussion of a multipollutant U.S.
AQI, this has not been developed, in part because of the
complexity of multipollutant exposure. In Canada,
government researchers have recently developed a
multipollutant air quality health index in response to this
very concern, that our current methods of assessing air
quality for health advisories do not capture additive effects
of multiple pollutants or reflect the apparent no-threshold
concentration-response relationship between air pollution
and health (Stieb et al., 2008). Noting the uncertainty of how
best to reflect the mix of pollutants, these researchers
currently recommend, based on extensive sensitivity
analyses and mortality data, use of a 10-point scale based on
continuous trailing 3-hour concentrations of three

pollutants: NO2, O3 and PM2.5. Some of the findings and
challenges of multipollutant health-effects research are
addressed in the Discussion of this report.

AIR QUALITY MODELING

To address some of the shortcomings of monitor-based
and proximity studies, increasingly complex models are
being developed to estimate exposure using, variously and
often in combination, meteorological, emissions, chemical
reactivity, transport, geographical, time-activity, and other
data. Such models have the advantage of estimating
pollutant concentrations in areas where there are no
monitors and of estimating concentrations of pollutants that
are not being measured by existing monitors or are
measured poorly by existing instrumentation. The
complexity of these evolving simulation models, however,
may lead to erroneous simulated concentrations. These
models, for example, are dependent not only on the quality
of emissions data and meteorological input but also, in the
case of photochemical models, on the ability of the
chemical algorithms to accurately estimate atmospheric
chemistry. Nevertheless, a growing sophistication in air
quality modeling, which is now increasingly used for
source identification and for developing effective pollution
reduction strategies, coupled with a growing awareness of
the limitations of many of the current epidemiologic study
designs especially with regard to “hot spot” analysis, has
led to recent efforts to extend pollutant modeling to
estimate exposure and, increasingly, to better understand
the potential role of air pollutants in causing or exacerbating
adverse health effects. Our pilot study uses one of these
models, the U.S. EPA's CMAQ model. 

Until relatively recently, air quality models typically
addressed individual pollutants separately, primarily to
address regulatory issues. For example, a dispersion model
might be used to estimate the spatial distribution of and
population exposure to benzene from a large industrial
source under various meteorological conditions and to
determine whether additional permits might be allocated to
expand the operation. However, pollutants do not exist in
isolation and control strategies that address one set of
problems may aggravate other related pollutant issues.
Similarly, populations are exposed to multipollutants, some
of which are synergistic, and different populations have
different vulnerabilities to adverse effects associated with
exposure. 

The growing appreciation of the complexity of air quality
and human exposure has encouraged the development of
more sophisticated modeling systems. For example,
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pollutants in the atmosphere are subject to numerous
transport processes and transformation pathways that
control their composition and levels. Also, pollutant
concentration fields are sensitive to the type and history of
the atmospheric mixtures of different chemical compounds.
Thus, modeled abatement strategies of pollutant precursors,
such as volatile organic compounds (VOCs) and NOx, to
reduce O3 levels may under a variety of conditions cause an
exacerbation of other air pollutants, such as PM, or create
problems with acidic deposition. In addition, although
early attention in the U.S. tended to focus on O3, NO2, CO,
SO2, and PM, more recent efforts have begun to recognize
the 187 defined HAPs, diesel exhaust and other species, as
their roles in CAP formation and health effects are better
appreciated.

An overview of the development of comprehensive air
quality models is beyond the scope of this report, as is more
than a brief description of several models currently being
used, directly or indirectly, in exposure and/or health
effects studies. The U.S. EPA web site offers an overview of
and links to most of the air quality models in use today,
including dispersion, photochemical and receptor models
(U.S. Environmental Protection Agency, 2008). In general,
air quality modeling techniques can be divided into three
categories: 

• Gaussian dispersion modeling, in which the distribution
of nonreactive species are described with a Gaussian
plume dispersion equation or one of its variations using a
steady state assumption. AERMOD and ASPEN, briefly
described in the next section, are examples of Gaussian
dispersion models.

• Lagrangian modeling, in which movements of air parcels
are followed to simulate mixing and chemical
transformations. HYSPLIT, briefly described in the next
section, is an example of a Lagrangian model.

• Eulerian modeling, in which a fixed three-dimensional
grid system is used to represent comprehensive
atmospheric processes, such as transport, emissions,
physical and chemical transformations, and deposition.
CAMx and CMAQ, briefly described in the next section,
are examples of Eulerian models.

As noted earlier, air quality models are among the
primary tools used to evaluate the impacts from emissions
changes and therefore play a major role in the development
of regulatory policy. Increasingly, as the models become
more robust and accurate, the output is also being used as a

measure of human exposure or of health benefits associated
with emissions reductions. In addition to models that
simulate pollutant concentration fields, there are a number
of exposure models that can help refine these fields to better
estimate human exposure. Among such models are the
Hazardous Air Pollutant Exposure Model (HAPEM), Air
Pollutant Exposure Model (APEX), and Stochastic Human
Exposure and Dose Simulation (SHEDS) model. These
models use simulated ambient air pollutant concentrations
as base input and then modify that input with added
information on activity patterns, indoor/outdoor exchanges,
toxicity factors, and microenvironments. Paramount to the
use of these exposure models, however, is the need for high-
quality meteorological data and pollutant concentrations for
baseline input. Brief descriptions of several air quality
simulation models that have been applied to the Houston
region, including CMAQ, follow.

AERMOD

The American Meteorological Society/Environmental
Protection Agency Regulatory Model Improvement
Committee Model (AERMOD) atmospheric dispersion
modeling system (U.S. Environmental Protection Agency,
2008) is an integrated model that includes three modules:
(1) a steady-state model designed to compute ground-level
air pollutant concentrations for short-range (up to 50
kilometers) dispersion of air pollutant emissions from
stationary industrial sources; (2) a meteorological data
preprocessor (AERMET) that accepts surface meteorological
data, upper air soundings, and optionally, data from on-site
instrument towers; and (3) a terrain preprocessor
(AERMAP) whose main purpose is to provide a physical
relationship between terrain features and the behavior of air
pollution plumes. The AERMOD system, which is
particularly well-suited for neighborhood-level
assessments, has recently been used in conjunction with
CMAQ in hybrid models-including a study in Houston-to
improve local-scale exposure estimates (Isakov et al., 2007;
Stein et al., 2007).

ASPEN

The Assessment System for Population Exposure
Nationwide (ASPEN) model consists of a dispersion and a
mapping module. The dispersion module is a Gaussian
formulation, based on the Industrial Source Complex Short
Term 3 (ISCST3) dispersion model, for estimating ambient
annual average concentrations at a set of fixed receptors
within the vicinity of an emission source. The mapping
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module produces a concentration for each census tract.
Input data needed are emissions data, meteorological data
and census tract data. The Emissions Modeling System for
Hazardous Pollutants (EMS-HAP) is used to process the
emissions inputs. The U.S. EPA used ASPEN and the
National Emissions Inventory (NEI) final version 3 to
simulate annual 1999 concentrations of 177 air pollutants (a
subset of the 187 HAPs plus diesel PM) in U.S. census tracts
for the most recent National-Scale Air Toxic Assessment
(NATA) (U.S. Environmental Protection Agency, 2007), the
results of which were released in 2006. In the Houston area,
Whitworth and associates recently used the NATA ASPEN
output for benzene and 1,3-butadiene to examine the spatial
distribution of childhood lymphohematopoetic cancer,
generally finding higher levels of cancer in census tracts
with higher levels of thee pollutants (Whitworth et al.,
2008). The NATA exposure and risk assessment also used
an exposure model, HAPEM5, to improve the exposure
metric. As part of the performance evaluation of the
simulations used in our study, we compared ASPEN and
our output for selected HAPs in Harris County.

HYSPLIT

The Hybrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT) model computes simple air parcel
trajectories to complex dispersion and deposition
simulations. The dispersion of a pollutant is calculated by
assuming it to be either in a puff or particle state. HYSPLIT
has been used in various applications including
apportionment of species such as PM and mercury to their
source locations (Martello et al., 2008; Sunderland et al.,
2008). Stein and associates have tested the feasibility of a
hybrid model approach that uses CMAQ, HYSPLIT, and/or
AERMOD to simulate with high spatial resolution benzene
concentrations in Houston for August 18 to September 4,
2000 (Stein et al., 2007). In this simulation, HYSPLIT was
used to model concentration variability from different
sources or pathways. The HYSPLIT concentrations, along
with the more spatially resolved concentrations from
AERMOD, were then added to the CMAQ-calculated
background concentration to estimate the total mean
benzene concentration.

CAMx

The Comprehensive Air Quality Model with extensions
(CAMx) model is an Eulerian photochemical dispersion
model that allows for integrated "one-atmosphere"
assessments of gaseous and particulate air pollution over

scales ranging from sub-urban to continental. CAMx is
maintained and distributed by ENVIRON. The Texas
Commission on Environmental Quality (TCEQ) has used
CAMx for modeling its base-case ozone scenarios to
develop its State Implementation Plans (SIP) to reduce
ambient ozone concentrations in nonattainment areas such
as Houston. More recently, the University of Houston's
Institute for Multi-dimensional Air Quality Studies (UH-
IMAQS) and others have run parallel CMAQ and CAMx
simulations to better understand the strengths and
weaknesses of each model. The primary difference between
the two models is different handling of plumes, which
causes different vertical distributions of emissions. Chang
and Allen used CAMx to study the role of chlorine radicals
on ozone formation (Chang and Allen, 2006) in East Texas,
and the South Coast Air Quality Management District in
California recently used CAMx to estimate the health
benefits of decreased PM2.5 levels associated with proposed
marine vessel control measures (South Coast Air Quality
Management District, 2007). 

CMAQ

The Community Multiscale Air Quality (CMAQ) model is
an Eulerian multipollutant, multiscale air quality modeling
system that simulates various photochemical and physical
processes that are thought to be important for
understanding atmospheric trace gas transformations and
distributions. The CMAQ system uses a three-dimensional
nested grid system. For our investigation, the CMAQ
modeling used nested domains with grid sizes of 36, 12, 4,
and 1 km, and 23 vertical layers. For our health-based
model we used output from the 4-km grid and layer 1, the
ground-level layer. The CMAQ modeling system contains
three types of modeling components: (1) a meteorological
modeling system (e.g., MM5) for the description of
atmospheric states and motions, (2) emissions inventories
(e.g., NEI) and software (e.g., SMOKE) for apportionment of
anthropogenic and natural emissions into the grid, and (3) a
chemistry-transport modeling system (e.g., SAPRC) for
simulation of air pollutant concentrations. The CMAQ
model was developed through a partnership between U.S.
EPA and the National Oceanic and Atmospheric Agency
(NOAA), and is available from the Community Modeling &
Analysis System (CMAS; www.cmascenter.org). It is
designed as a holistic modeling tool for handling all the
major pollutant issues, including photochemical oxidants,
particulate matter, and acid and nutrient deposition. As
such, it lends itself to modifications, for example, to
explicitly simulate HAPs of particular interest. A detailed
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explanation of the CMAQ system is beyond the scope
of this report; for additional information, visit
www.epa.gov/asmdnerl/CMAQ or www.cmaq-model.org.
The physical options and modifications to CMAQ used for
the simulations in our study are discussed in the Methods
section. Briefly, the version of CMAQ used in our study,
CMAQ4.4 (SAPRC99-ARO), uses a modification of the
SAPRC99 chemical mechanism to explicitly simulate a
number of aromatic and other HAP species. We use the term
CMAQ4.4 to refer to this modification.

CMAQ has been recently used to examine changes in O3
concentrations based on changes in NOx emissions from
power companies in the Eastern U.S. (Gego et al., 2008), and
has been used in a number of studies to examine human
exposure to environmental pollutants, often including risk
assessment or assessment of dose across multiple
environments and activity patterns  (Furtaw, 2001;
Georgopoulos et al., 2005; Isakov et al., 2007; Marshall et al.,
2008; Sanhueza et al., 2003; Sokhi et al., 2006). In the
Houston-Galveston area (HGA), Ching and associates used
CMAQ to investigate subgrid variability by simulating key
photochemical species, including CO, O3, NOx, and
acetaldehyde, at four grid sizes (36, 12, 4, and 1 km) for
August 30, 2000 (Ching et al., 2006). 

CMAQ-HAP

The CMAQ-HAP model is a simplified version of our
SAPRC99-ARO-modifed CMAQ4.4 model. CMAQ-HAP,
which was developed by Dr. Violeta F. Coarfa while with
the UH-IMAQS team, is an engineering model that utilizes
oxidant fields produced by the CMAQ4.4 model to generate
additional HAP species, greatly reducing computational
time for these HAPs. The CMAQ-HAP model, for example,
performs a one-day simulation in 1 hour and 40 minutes, 8-
9 times faster than the CMAQ4.4 model. 

Using CMAQ to study HAPs explicitly is a relatively new
application of the CMAQ system. Although Eulerian air
quality modeling has been used to study ozone
nonattainment problems in the HGA for many years, it has
not generally been used for air toxics modeling. Most of the
air toxics modeling for the region has been performed using
a Gaussian dispersion model, such as the Gaussian-Plume
Multiple Source Air Quality Algorithm (RAM) (Radian
Corporation, 1995; U.S. Environmental Protection Agency,
1987) or the ISCST model (U.S. Environmental Protection
Agency, 1995; U.S. Environmental Protection Agency,
2002). The EPA applied the ISCST model to Houston for the
model year 1996 as a demonstration project, “Example
Application of Modeling Toxic Air Pollutants in Urban

Areas” (U.S. Environmental Protection Agency, 2002). As
noted earlier, however, dispersion modeling has a number
of limitations despite good local-scale resolution for many
species. It does not, for example, account for wind shear,
track plumes beyond about 50 km, handle chemistry
correctly, or include biogenic sources. For many HAPs,
ignoring photochemical production is of particular concern
as the secondary creation of HAPs in the atmosphere can
account for a significant portion of their ambient
concentrations.

Luecken and associates simulated concentrations for five
HAPs-formaldehyde, acetaldehyde, benzene, 1,3-butadiene,
and acrolein-across the continental U.S. for year 2001 at a
resolution of 36 km using an adaptation of CMAQ (Luecken
et al., 2006). Seigneur and co-workers modified CMAQ to
perform regional modeling of the atmospheric fate and
transport of benzene and diesel particles (Seigneur et al.,
2002) and have more recently reviewed the status of air
toxics modeling, emphasizing the potential of Eulerian
models (Seigneur, 2005). Ching and associates have created
an air toxics version of CMAQ by incorporating
modifications to version 4 of the Carbon Bond (CB4)
chemical mechanism. This version of CMAQ, called
CMAQ-AT, has been used to simulate concentrations of 1,3-
butadiene, formaldehyde, acetaldehyde, and benzene at 4-
km resolution in central Philadelphia (Ching et al., 2004). In
addition, Ching and associates used the CMAQ-AT output
to calculate average exposure levels using HAPEM, which
they compared with NATA estimates for Philadelphia. 

Comparison of Models for Health Studies

The use of simulated air pollutant concentrations from an
air quality model for health effects studies requires careful
attention to the nature of the pollutants studied (e.g., are
secondary photochemical pollutants important? Is
transport?), the geographical resolution, the probable roles
of topography and meteorology, the time scale, and the
health endpoints (e.g., out-of-hospital cardiac arrest or
cancer). Each model has various strengths and weaknesses.
In addition, depending on the goals of the study, study
design, and availability of data, it may be appropriate to
consider using several models (a hybrid approach) or using
a combination of modeled and measured pollutant
concentrations to better approximate exposure. Among
models, the CMAQ system is particularly well designed for
secondary photochemically produced pollutants and
biogenic emissions, neither of which is included in
dispersion or Lagrangian models. CMAQ is also one of the
few systems that can accommodate CAP and HAP
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emissions in a “one atmosphere” system. The current
maximum resolution capability of the CMAQ system at
ground level is around 1 km2, but more detailed emissions
input, chemistry, terrain information, and transport
mechanisms are needed to improve simulated output at this
resolution. Increased computational efficiency and
infrastructure will also be needed to reasonably run the
CMAQ model at this resolution and for longer study periods
for future local-scale health-based studies. 

Although Lagrangian models handle transport efficiently
and with high resolution, the Lagrangian model is
essentially a one-pollutant model, as are most diffusion
models. In addition, Lagrangian and dispersion models
generally do not include secondary pollutants (or do so only
to a limited degree) and so are best suited for relatively inert
species, such as benzene, PM, and some metals. On the
other hand, local-scale dispersion modeling can provide
improved spatial characterization of mobile and industrial
emissions unattainable with CMAQ. For this reason, several
researchers have recently proposed the use of a hybrid
modeling approach that uses, for example, input from
CMAQ to model the background concentrations augmented
with concentrations from local-scale sources generated by
ASPEN, AERMOD, and/or HYSPLIT (Cook et al., 2008;
Isakov et al., 2007; Stein et al., 2007). Others are working to
develop methods for weighting concentrations simulated by
CMAQ or other models with time-activity, commuting, and
other exposure factors; personal monitoring; population
density; and observed ambient concentrations, as
appropriate (Georgopoulos et al., 2005; Ozkaynak et al.,
2009). Efforts to combine modeled and measured pollutant
output utilizing space-time modeling are especially
promising (McMillan et al., in press). These modifications
and improved computational capabilities are also critical
for improving simulated air quality output for regulatory
decision-making, as well as for linked health effects
research (Isakov et al., 2007; Riccio et al., 2006; Xie and
Berkowitz, 2007). 

In the preliminary work presented here, we use a
combination of simulated output from MM5 and two
CMAQ versions with modified chemistry to better represent
selected HAPs, along with the CAPs. Although local-scale
“hybrid” approaches offer a means for improving exposure
estimates, they were unavailable to be implemented during
this phase of our study and generally beyond the scope of
our pilot study. It will be of interest in the future to re-
examine the results of the current study with outputs from
approaches that provide additional spatial detail and/or
weighting from measured concentrations.

HOT SPOTS

The phrase “hot spot” is used in the environmental arena
to mean slightly different things. Most commonly it is used
either to (1) define a relatively small geographical area in
which an individual pollutant exceeds some regulatory
guideline or threshold, or (2) define a neighborhood where
one or sometimes several pollutant concentrations are
elevated relative to some guideline or levels elsewhere such
that there is reasonable expectation that these elevated
concentrations present an increased risk of adverse health
effects to those who reside or spend significant time in the
area or neighborhood. 

The U.S. EPA and several other federal agencies have
programs that designate geographical areas of concern for
exposing residents to elevated levels of pollutants that are
likely to be associated with adverse health effects,
especially among susceptible populations. For individual
CAPs, the U.S. EPA has health-based standards and
designates as nonattainment areas those areas that do not
meet these standards, also ranking these areas by severity.
Although localized “hot spots” can and do exist for CAPS,
by design for regulatory compliance and because of the
nature of the criteria pollutants-which tend to be urban-
based, present in relatively large quantities, and often travel
significant distances-nonattainment areas generally
encompass metropolitan areas. In the HGA the
nonattainment area for O3 consists of eight counties. Within
the 1990 amended federal Clean Air Act (CAA), the only
specific reference to pollution “hot spots” is under
transportation conformity, which requires “hot-spot”
analyses for many new transportation projects to assess air
quality impacts on a smaller scale, such as at a congested
roadway intersection, than an entire nonattainment area.
Transportation conformity “hot-spot” analyses use a
dispersion model and focus on future localized CO or PM
concentrations that would likely increase if the
transportation project were implemented. The Agency for
Toxic Substances and Disease Registry (ATSDR) Superfund
program is another example of a “hot-spot” designation,
and is somewhat distinctive in that most Superfund sites
address multiple pollutants as well as multiple media
through which exposure can occur.

In general, however, the term “hot spot” has been used to
describe relatively small geographical areas where residents
are exposed to elevated levels of one or more of the 187
designated HAPs plus diesel exhaust, in part because of
their toxicity at low levels and propensity to remain
relatively localized. By definition, HAPs are “those
pollutants that are known or suspected to cause cancer or
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other serious health effects, such as reproductive effects or
birth defects” (U.S. Environmental Protection Agency,
2008). The U.S. EPA's NATA program ranks census tracks in
the U.S. by public health risk to selected HAPs. In 2006 it
released its most recent assessment, which addressed
cancer and noncancer risk to 133 pollutants (U.S.
Environmental Protection Agency, 2006). NATA uses the
NEI, a dispersion model, an exposure model, and species-
specific toxicologic factors. Although census tracks are
often larger than many “hot spot” designations and NATA
does not use the phrase per se, the elements and intent of
the program are very similar to, for example, the California
“hot spot” program.

The California Air Resources Board (CARB) defines an air
pollution “hot spot” as a “location where emissions from
specific sources may expose individuals and population
groups to elevated risks of adverse health effects-including
but not limited to cancer-and contribute to the cumulative
health risks of emissions from other sources in the area”
(California Air Resources Board, 2006). The goals of
California's AB 2588 Air Toxics “Hot Spots” Program are to
collect emission data, identify facilities having localized
impacts, ascertain health risks, notify nearby residents of
significant risks, and reduce those significant risks to
acceptable levels. The program uses cancer potency factors
and acute and chronic noncancer Reference Exposure
Levels (RELs) approved by California's Office of
Environmental Health Hazard Assessment and CARB to
assess health risk in areas of suspected impact.

In Texas, the TCEQ maintains an Air Pollutant Watch List
(APWL) (Texas Commission on Environmental Quality,
2008), which is defined as a list of areas in Texas where
specific pollutants were measured at levels of concern,
generally using the state's Effects Screening Levels (ESLs)
that have been developed for short-term and long-term
exposure for approximately 5,000 substances (Texas
Commission on Environmental Quality, 2008). In Harris
County, for example, an area near the Lynchburg Ferry is on
the APWL for benzene and styrene, and an area near
Manchester is listed for 1,3-butadiene. In general,
measurements from fixed-site monitors determine
inclusion on the list.

For the specific purposes of the pilot study presented
here, a “hot spot” is a 4 x 4-km cell with elevated predicted
risk for admission to an area hospital for either
cardiovascular or respiratory disease and that is associated
with elevated levels of one or more simulated pollutants as
determined by multivariate statistical analysis, controlling
for various demographic factors. 

RATIONALE

The primary rationale for this pilot study is to help
advance the identification of potential “hot spots” of
disproportionate exposure and health effects by (1) using an
air pollution simulation model for more comprehensive
geographical coverage than can be accomplished using
monitors, and (2) utilizing actual measurable health
endpoints to predict risk. The emphasis of this effort is on
developing methods for the above and on delineating
various problems that may limit its usefulness and/or that
need further development.

The decision to study Harris County, Texas, for this
preliminary study is the result of several factors. First,
Harris County has some of the highest O3 and HAP
concentrations in the country. The county is a designated
severe nonattainment area for the eight-hour O3 standard,
and ranked 1st in 2003 among U.S. counties for exposure to
elevated 1-hour concentrations of O3 and 7th in exposure to
all NAAQS pollutants. Among HAPs, Harris County ranks
1st in the nation for total emissions of the 187 HAPs (Green
Media Toolshed, 2008; U.S. Environmental Protection
Agency, 2008). 

In addition, Harris County has significant geographic
pollutant gradients that make it particularly well suited for
a “hot spot” study. The county, which includes most of
Houston and is located in Southeast Texas along the Gulf
Coast, has a mixture of densely populated and rural areas,
complicated meteorology that results in high levels of
photochemical species and a tendency for geographically
localized areas of high pollution, often associated with
emissions from its large concentration of petrochemical
facilities (Webster et al., 2007). In addition, its lack of zoning
likely amplifies the exposure gradient (Maantay, 2001).

The unusually large number of hospitals, many in or
connected with institutions in the Texas Medical Center,
provides excellent geographical coverage for the area and
likely results in more consistent use of the hospital system
and better data than in areas with fewer facilities. In our
study, data from 95 hospitals in Harris County and the
contiguous counties were used. 

In addition, the county is exceptionally demographically
diverse, with a population of more than 3.4 million, of
whom approximately 42.1% are White, 32.9% are Hispanic
or Latino, 18.5% are Black, and 5.1% are Asian (U.S.
Census Bureau, 2000). Other demographic indicators, such
as income, have wide gradients across the county with, for
example, average median household income by census tract
ranging from $6,673 to $170,121. Such demographic
variability is important for teasing out the role of these
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factors in vulnerability to adverse health events.
Harris County also has a large number of fixed-site air-

pollution monitors, most of which collect hourly data, and
has recently been the focus of several intensive air quality
studies, including the Texas Air Quality Study 2000
(TexAQS-I) and, more recently, the 2006 TexAQS-II (Texas
Commission on Environmental Quality, 2007; The
University of Texas at Austin, 2000). The information and
findings from these studies are available for our study and
are being used to refine model simulations, inventories and,
more generally, to better understand pollutant formation in
the region. The UH-IMAQS is a central participant in these
regional modeling and measuring efforts and is currently
running daily near-real time CMAQ forecasts for the region,
which are available online, along with statistical and visual
measures of model performance (University of Houston
Institute for Multi-dimensional Air Quality Studies, 2008).

HYPOTHESIS 

The hypothesis that we are testing is that the age-adjusted
rates, by discharge diagnosis, of Harris County residents
hospitalized during the study period differ geographically
among the 337 4 x 4-km cells that overlay the county and
correlate with MM5-, CMAQ4.4- and CMAQ-HAP-
simulated meteorological values and/or concentrations of
ambient air pollutants, controlling for other variables.

OBJECTIVE AND SPECIFIC AIMS

The primary objective of this pilot study was to test,
evaluate, and improve the methodology for conducting
multipollutant “hot spot” analyses, using simulated
pollutant concentrations and actual health effects. The
hypothesis focused our initial efforts.

The specific aims of this exploratory study included:

• Simulate hourly meteorological and pollutant
concentrations using the MM5, CMAQ4.4, and CMAQ-
HAP models for 337 4 x 4-km cells across Harris County
for July 1 through September 28, 2000.

• Conduct selected model performance evaluations and
explorations of the CMAQ output, such as by comparing
simulated and observed concentrations at available
monitors within Harris County and developing different
averaging schema or other representations of the
simulated data, with an emphasis on evaluating the
capability of CMAQ output to reasonably estimate human
exposure.

• Obtain hospital admissions data for the study area; assess
the quality of the data and clean as appropriate; extract
and describe the relevant records; develop methods for
characterizing individual-level information; and geocode
residential addresses of Harris County patients for the
study period, noting any difficulties.

• Obtain demographic data from Census 2000 for the study
area; assess the quality of the data and clean as
appropriate; extract the relevant records; and develop
methods for apportioning the aggregate data to each of the
337 CMAQ 4 x 4-km cells, noting any difficulties.

• Use ArcGIS and statistical software to characterize each 4
x 4-km cell by the simulated meteorological and pollutant
variables chosen, hospital admissions data by
cardiovascular respiratory and cardiopulmonary (either)
discharge diagnosis, and demographic information.

• Develop, evaluate, and refine statistical methods for
assessing potential associations between simulated
meteorological and pollutant variables and hospital
admission rates, controlling for selected individual and
group demographic variables, with the goal of developing
“hot-spot” rankings and predictive maps of risk (i.e.,
probability of hospitalization by diagnosis category) by 4
x 4-km cell for the various outcomes studied.

• Use ArcGIS, SigmaPlot, SAS, and other software to create
maps, graphs, and other visual representations as
appropriate for the independent and dependent variables
to aid in the exploration and communication of the data
and of the analyses.

• Evaluate and discuss the methodology developed,
problems encountered, and future efforts to be explored
as a result of this pilot study.

• Share the methodology, problems, outcomes, and other
aspects of the study through manuscripts, presentations,
and other venues to stimulate discussion and approaches
for improving the model.

METHODS

In this section, we discuss briefly the evolution of some of
the methods used, followed by detailed descriptions of the
actual methods used in the final study, including the data
sources used.
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PRELIMINARY WORK

Before attempting the analysis that forms the core of this
final report, we explored, tested, and analyzed a single
month of data, August 2000, using this first phase to explore
a limited set of data, identify problems, and scrutinize and
refine the methodology. It was during this first phase that
we adapted the grid for the health data, scrutinized and
developed statistical scripts for the hospital admissions
data, and made numerous decisions, such as the decision to
include the cells that overlapped the edges of Harris County,
that we would subsequently apply to the expanded three-
month data set. This initial exploratory model used the
1999 NEI (NEI99). Output was explored temporally, looking
at four 6-hour averages (midnight to 6 am; 6 am to noon;
noon to 6 pm; and 6 pm to midnight), as well as spatially,
by examining 30-day averages across the 337 cells. It was
also during our exploration of one month of data that we
developed customized software and statistical scripts,
described later in the Methods section, to reduce the
computational and personnel time needed to run some of
the CMAQ simulations, reduce the time required and
potential for error while apportioning demographic data to
the grid cells, and develop systematic methods for
geoaddressing patient addresses to increase the accuracy
and percentage of records geoaddressed within the
constraints of time and resources. In addition,
unanticipated problems associated with the use of a grid-
based system for health effects data resulted in re-thinking
in various ways the statistical methods for the multivariate
regressions.

After various adjustments, we expanded the study to
include three months of data (July-September 2000). During
this phase, two models were developed, one with the
regular year 2000 TEI and the other with the imputed TEI.
The imputed inventory adds additional reactive VOCs to
the regular inventory, based on observational data from the
TexAQS studies, to better approximate peak ozone levels.
The effect of this change is less well understood for some of
the other species (Kim et al., 2006). Because there was no
meteorological data for September 29 and 30 (CST), we
initially ran the regular TEI analysis using meteorological
input from other similar days in order to simulate the entire
three months. Using the 92-day model, we examined four
pollutant averaging schema temporally and spatially, and
incorporated principal components analysis (PCA) and
analysis of residual spatial autocorrelation into our
statistical methods. The statistical team also developed
methods to reduce uncertainty from variations in the cell
populations. The statistical model used was a linear mixed-

effects model (LMM), as was used in the final analyses
described in this report. Thus for the 92-day analysis we
developed 24 multivariate LMM, using four averaging
schema, three outcomes, and for each outcome used either
the PCA factors or the 16 HAPs. Lessons learned were
incorporated into the analysis reported in this final report.

For the analyses reported here, we chose to drop the two
days that used surrogate meteorological input, use the
imputed TEI, and focus on a single averaging schema. The
latter decision is discussed separately under Averaging
Schema. We also added two meteorological variables,
temperature and relative humidity, as independent
variables, and chose to use NOx in the model rather than
NO2 to better capture this pollutant class. We also examined
the issue of multicollinearity in our model, which is the
result of correlation between multiple pollutants in
multivariate models. Because our primary study objective
was to define “hot spots” of disproportionate exposure and
health effects, we chose to accept the collinearity in the
statistical model and to focus on using the full multivariate
model to predict conditional hospitalization rates for each
cell for each outcome. This decision, however,
acknowledges that the interpollutant collinearity distorts
the multivariate regression effect estimates such that they
cannot be used to assess the individual contributions of the
variables, a distinct disadvantage. On the other hand, the
potential advantage is a more comprehensive and useful
delineation of areas of concern, areas which then can be
targeted for appraisal, additional data collection, and more
rigorous statistical analyses. Some of the issues concerning
multipollutant models are addressed in the Discussion
section. 

In the next sections we discuss the data sources and
preparation of the data for use in the statistical model. 

MODELING AND DATA COLLECTION

Specific data-related problems and challenges
encountered are noted in this section as appropriate, with a
more rigorous discussion of problems of particular concern
in the Discussion.

Grid

The unit of spatial analysis chosen for this pilot study was
the 4 x 4-km cell. This level of resolution is within the
capabilities of the CMAQ model and is being used for
forecasting in the HGA. Higher resolution at the 1 x 1-km
resolution creates much higher computational demands
and is not generally supported by the resolution of



emissions data at this time. In addition, a much longer
study period would be required to have sufficient hospital
admissions to support this resolution and was not feasible
for this pilot study. Nevertheless, efforts are on-going to
work at a higher resolution, which would be more capable
of capturing meaningful neighborhood-level “hot spots.”
See Future Efforts.

Because data sources of different resolution needed to be
apportioned at the cell level, accurate cell boundaries were
particularly important. Creating the grid in ArcGIS-the
software we used for creating and merging different
geospatial data layers for subsequent analysis-was more
challenging and time-consuming than first anticipated.
Because CMAQ is designed to flexibly accommodate a wide
range of input, its governing equations are expressed in a
generalized coordinate system that determines the
necessary grid and coordinate transformations, and it can
accommodate various vertical coordinates and map
projections (Byun and Schere, 2006). This relative
flexibility is one of CMAQ's strengths, but it unexpectedly
led to some challenges when apportioning specific patient
addresses and demographic variables to the 4 x 4-km cells. 

Geographically, there was a 30-meter difference between
seconds to two decimal places and seconds to four decimal
places-a sufficient difference to incorrectly place numerous
patient addresses into the wrong cell. The first grids
developed in ArcGIS from coordinates used for CMAQ's 4-
km grid were inadequate for the demands of the health
portion of this pilot study. We eventually used the highest
level of precision available in the CMAQ system, using the
longitude and latitude coordinates of the 1 x 1-km CMAQ
grid in degrees, minutes, and seconds, with seconds to four
decimal places. Working at this precision, we subsequently
created ArcGIS-based 4-km and 12-km grids that co-
localized with the 1-km grid. This not only produced the
precision needed for accurately apportioning other health-
related data layers to the cells, but allowed us to develop
databases that can be utilized at higher grid resolutions for
future work.

The coordinate system used was State Plane Coordinate
System (SPCS), Texas South Central region (Federal
Information Processing Standard (FIPS) 4204), feet, North
American datum (NAD) 1983. This system uses the Lambert
Conformal Conic projection. From the 4 x 4-km grid for East
Texas (5,395 cells), we extracted the 337 cells that intersect
with Harris County (Figure 1). These 337 cells, which are
numbered by column and row as part of the larger East
Texas grid, are used for all subsequent characterizations and
analyses in this study.

Meteorological and Pollutant Data

The exposures of primary interest in this multipollutant
model included two meteorological variables (temperature
and relative humidity), five CAPs (CO, O3, NOx, PM2.5, SO2)
and 16 HAPs (acetaldehyde, acetone, acrolein, benzene, 1,3-
butadiene, chloroform, cresols, ethylene dibromide,
ethylene dichloride, ethylene oxide, formaldehyde,
methylene chloride, perchloroethylene, phenols,
trichloroethylene, and vinyl chloride). The selection of
HAPs was primarily based on the health effects and
toxicological literature, although a desire to include HAPs of
particular interest to the HGA and to include representative
chemical species also played a role. The hourly output for
the final model was simulated for July 1 through September
29, 2000, as meteorological simulations were not available
for September 30 and October 1. The additional day was
necessary for subsequent conversion of the time base for all
simulated species from Coordinated Universal Time (UTC)
to Central Standard Time (CST), a conversion factor of -6
hours. Although our study period falls within Central
Daylight Time (CDT), CST was used for comparisons with
TCEQ monitors, which are reported in CST year-wide, and
for easier expansion of the study time base in future work. 
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Figure 1: The study area, Harris County, Texas. Shown is the 4 x 4-km grid
used for the meteorological and pollutant simulations, geospatial
apportionment of residential addresses and demographic characteristics,
and statistical analyses. Column (left) and row (bottom) numbers
correspond to the regional CMAQ grid. Each cell is designated by a four-
digit column-row name. The red squares and smaller purple triangles
represent Toxic Release Inventory (TRI) and Harris County permitted
facilities, respectively.
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Modeled temperatures were extrapolated to a vertical
height of 1.5 meters; relative humidity and pollutant
concentrations were estimated at the middle of layer one,
i.e., at approximately 17 meters. Hourly simulated
concentrations were obtained on the hour and reflect
centered mean averages of the period 30 minutes before and
30 minutes after the hour.

Averaging Schema

For this pilot spatial study, an averaging schema needed
to be chosen to represent chronic ambient exposure in each
of the 337 cells across the study period. This was
complicated by a number of factors, including daily
temporal variations in the maximal and minimal hourly
concentrations across the pollutants, activity patterns that
may make some windows of exposure more important than
others, and variations among the pollutants in the
penetrance of outdoor pollution indoors. Assessment of
simulated concentrations against measurements from
available monitors using the chosen average schema was
another consideration. 

Before choosing an averaging schema for the final pilot
analysis, we examined in the 92-day model (see
Preliminary Work) four averaging schema that had exposure
relevance: (1) mean of the daily maximum one-hour
concentrations, (2) mean of the daily maximum moving six-
hour means, (3) mean of the daily six highest hourly
concentrations, and (4) mean of the daily 24-hour means.
Although there were subtle differences in the regression
output based on the averaging schema chosen, for the
preliminary development and refinement of our
methodology we chose to use the 90-day mean of the 24-
hour daily means for the simulated meteorological and
pollutant values for each of the 337 cells. This was not the
best averaging schema for assessing CMAQ O3 model
performance, the pollutant for which we had the most
observed values. In our 92-day simulation, the mean
simulated-to-observed ratio was 0.91 for the mean of the
daily maximum moving six-hour means and 1.58 for the
mean of the daily 24-hour means. The simulated values for
the longer averaging period were approximately 58%
higher than the observed values. This bias is discussed in
the model performance section. The simulated-to-observed
ratio for mean of the 24-hour means, however, for most of
the other pollutants was generally as good as or better than
other averaging times. 

There were, however, other reasons that led us to choose
the 90-day mean of the 24-hour daily means for the pilot
study. Among these was a desire for a measure of chronic

exposure. Our pilot study is fundamentally a study of the
effect of geographical differences in on-going chronic
exposure to multiple pollutants on vulnerability to adverse
health effects, in our study measured by hospital
admissions and especially by admissions for cardiovascular
disease. Averaging shorter spans of simulated output (e.g.,
mean of the maximum daily one-hour concentrations or
mean of the daily maximum moving six-hour means) may
be generally more appropriate for acute effects. Biological
plausibility is an important component of selecting an
averaging schema. 

Also, these shorter maximal spans, in a model with up to
23 meteorological and pollutant values in the final
regression, occur at different times of the 24-hour day for
different pollutants. As discussed under Temporal and
Spatial Variability, examination of different averaging spans
and/or time of day demonstrated significant variations in
the time at which maximal values and/or moving averages
occurred. Thus the peak value of one pollutant could be
during the afternoon and another shortly after midnight.
Because activity patterns and outdoor-to-indoor penetration
ratios vary significantly across the pollutant species, we felt
that using an averaging schema based on a relatively short
but temporally variable daily maximum mean value
introduced too many other variables into the model.
Although a model could potentially be developed with
different windows and averaging schema for each pollutant
and meteorological variable, this was beyond the scope of
this pilot study and could also introduce some inadvertent
misclassification.

Another factor in our choice was comparison with other
pollution and health effect studies, which most commonly
use a 24-hour averaging schema. In the case of time-series
and case-crossover designs such as the recent study by
Dominici and associates of the effect of PM2.5 and O3 on
hospital admissions for cardiovascular and respiratory
outcomes (Dominici et al., 2006), the 24-hour average was
used with various lags, whereas several prospective cohort
studies that have addressed spatial differences, such as the
six-city study (Dockery et al., 1993; Laden et al., 2006) and
a recent geospatial study of chronic PM10 exposure in the
Nurses' Health Study (Yanosky et al., 2008), used 24-hour
means averaged over the study period. 

Last, use of 24-hour means allowed more comparisons
with observed values from area monitors, which were
sometimes only available as 24-hour samples or had
considerable missing or invalid hourly data that often did
not allow us to identify one-hour or moving six-hour
maximum concentrations but was usually adequate to
calculate a daily 24-hour mean. The importance of the

21

Winifred J. Hamilton et al



averaging schema in teasing out the best exposure metric is
addressed again in the Discussion.

MM5 Model

Temperature and relative humidity were among the
independent variables included in the health-based
statistical model. Our initial proposal did not include
meteorological variables as potential predictors of outcome
as our preliminary work suggested that the spatial variation
across the 337 cell in Harris County, given the relatively
short modeling run, would not warrant inclusion. After
analysis of the 92-day dataset, we decided to add these to
the final model. In addition to their potential value as
independent variables, they were useful in assessing CMAQ
model performance as high-quality simulation of
meteorology is a critical component of the ability of the
model to subsequently simulate pollutant concentrations
adequately. 

Hourly values for temperature and relative humidity were
simulated by the UH-IMAQS researchers using version
3.6.1 of the fifth generation Pennsylvania State/National
Center for Atmospheric Research mesoscale model (MM5).
The MM5 is a limited-area nonhydrostatic, terrain-
following sigma-coordinate model designed to simulate or
predict mesoscale atmospheric circulation. MM5 is widely
used for providing meteorological characterizations
throughout the air quality modeling community.

The physical options for the MM5 simulation, the output
of which was used both directly in the health-based model
and as input for the CMAQ4.4 and CMAQ-HAP
simulations, were as follows:

• Grell cumulus at 36 km and 12 km; no cumulus schema
at 4 km

• Analysis nudging for domain 1 (36 km) and domain 2 (12
km) 

• Continuous one-way nesting for domain 1, domain 2, and
domain 3 (4 km)

• Medium-Range Forecast Planetary Boundary Layer (MRF
PBL) parameterization 

• Rapid Radiative Transfer Model (RRTM) radiation
scheme 

• Modified National Oceanic and Atmospheric
Administration Land-Surface Model (NOAA LSM) with

Texas Forest Service year 2000 Land Use/Land Cover
(TFS LULC 2000) data; addition of the TFS data
significantly improves land-cover resolution and
categorization for the HGA (Cheng and Byun, 2008)

CMAQ4.4 and CMAQ-HAP Models

The air pollution data for this study were simulated by
the UH-IMAQS team on a Linux cluster (parallel mode)
using the CMAQ4.4 and CMAQ-HAP models, briefly
described earlier in the Air Quality Modeling section. The
simulations were run at 36-km (133 x 91 cells), 12-km (89 x
89 cells), and 4-km (83 x 65 cells) resolutions. The
simulations at 36 km and 12 km were used to provide the
boundary conditions for the 12-km and 4-km simulations,
respectively. 

The chemical mechanism used in the CMAQ4.4 model
was a refined version of the SAPRC99 mechanism, i.e.,
SAPRC99-ARO, in which 18 aromatics (including benzene,
acrolein, 1,3-butadiene, propene, and styrene) were
explicitly represented. Thus the CMAQ4.4 model used for
this study is in effect an air toxics modification of CMAQ
(see also the earlier more general description the CMAQ
model). The selection of gas-phase HAPs was based on
several factors, including regional levels and published
literature (Mayor's Task Force on the Health Effects of Air
Pollution, 2006). For the gas-phase chemistry, a
computationally efficient numerical method, the Euler
Backward Iterative (EBI) solver, was used. The Piecewise
Parabolic Method (PPM) was used for the horizontal and
vertical advections, and AERO3 was used for the aerosols.
Version 2.1 of the Sparse Matrix Operator Kernal Emissions
Modeling (SMOKE) system was used to apportion spatially,
chemically and temporally the source emissions. MM5 was
used to simulate the meteorological conditions for all three
grid resolutions, using the parameters listed in the previous
section. For the final 90-day CMAQ4.4 simulation the
following emission inventories were used:

• 36-km grid resolution
- 1999 National Emissions Inventory (NEI99) final version  
3 (U.S. Environmental Protection Agency, 2001)

• 12- and 4-km grid resolutions
- 2000 Texas Emissions Inventory (TEI 2000 base5b

imputed) + NEI99 final version 3 + MOBILE6 vehicle 
emissions

- Hybrid version of Global Biosphere Emissions and
Interactions System (GloBEIS) and the EPA's Biogenic 
Emissions Inventory System (BEIS), using TCEQ LULC 
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input and Meteorology-Chemistry Interface Processor 
(MCIP) output

For the CMAQ-HAP simulation, which uses CMAQ4.4
output for its primary input, only NEI99 final version 3 was
used. Although we present here output using the TEI 2000
base5b imputed inventory, in which additional highly
reactive volatile organic compounds (HRVOCs) were added
to the regular TEI to compensate for recognized
shortcomings in the inventory, the UH-IMAQS also ran the
simulation with the regular TEI as noted earlier. Both
outputs were evaluated and explored in the health model.
The imputed inventory generally improves model
simulations of O3 on high ozone days (Kim et al., 2006), and
was used in our final 90-day model. 

Thus MM5, SMOKE, CMAQ4.4, and CMAQ-HAP were
utilized to generate the simulated output, which included
temperature, relative humidity, CO, O3, NO2, NO, PM2.5,
PM10, SO2, and 16 HAPs. For our final model, NO2 and NO
were combined to form NOx, which was thought to better
represent the nitrogen oxide species. In addition, PM10 was
not included in the model as, based on the health literature,
PM2.5 appears to be a better measure of PM-related health
effects. CMAQ4.4, using the SAPRC99-ARO modification,
was used to simulate eight of the HAPs (acetaldehyde,
acetone, acrolein, benzene, 1,3-butadiene, cresols,
formaldehyde, and phenols). CMAQ-HAP was used to
simulate the other eight HAPs of interest (chloroform,
ethylene dibromide, ethylene dichloride, ethylene oxide,
methylene chloride, perchloroethylene, trichloroethylene,
and vinyl chloride).

Descriptive statistics of the MM5- and CMAQ4.4- and
CMAQ-HAP-simulated output for July 1-September 28,
2000 are shown in Table 1, using the averaging period
chosen for this spatial chronic exposure study, i.e., the 90-
day mean of the 24-hour means. 

Temporal and Spatial Variability

Daily temporal variations in the simulated CMAQ output
were explored by plotting the mean concentrations for
three-, six- and 12-hour spans (not shown), beginning at
midnight CST, for the 90-day interval. Photochemically
active species such as formaldehyde, ozone, and acrolein
tended to demonstrate significant variations during the
sunlight hours, either increasing or decreasing depending
on their photochemistry. Less photochemically active
species, such as PM, CO, and perchloroethylene,
demonstrated much smaller differences during the 24-hour
day. As noted in our discussion of the averaging schema

chosen for this pilot study, future refinements of the
exposure metric may wish to utilize these daily temporal
variations to weight estimated exposure based on activity
patterns and indices of toxicity.

Another measure of interest was within-cell variability.
Although we did not include any measure of within-cell
variability in this pilot study, we speculate that subgrid
variability in conjunction with intercell differences in
chronic baseline concentrations may be important in
triggering health effects, such as hospital admissions. In
Figure 2, we plotted the standard deviations for the hourly
simulated concentrations for four pollutants, CO, O3, NOx,
and PM2.5, with the 4 x 4-km cell with the highest
variability shown in black. In future refinements, subgrid
variability can be used to refine exposure and/or
vulnerability to health effects that may be particularly
affected by large variations between the minimum and
maximum concentrations. See also Future Efforts.
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SPECIES ABBR UNIT N 
MEAN 

90-DAY  
24-HOUR 
MEANS 

STD 
DEV 

MINIMUM  
90-DAY  

24-HOUR 
MEAN 

MAXIMUM  
90-DAY  

24-HOUR 
MEAN 

Relative Humidity RH % 337 62.00 1.38 58.62 65.43 

Temperature TEMP C 337 28.69 0.66 27.63 30.15 

Carbon monoxide CO ppm 337 0.19 0.05 0.11 0.40 

Nitrogen dioxide NO2 ppb 337 10.25 3.92 3.37 21.40 

Nitrogen oxide NO ppb 337 1.36 1.12 0.16 7.25 

Nitrogen oxides NOx ppb 337 11.62 4.97 3.53 28.15 

Ozone O3 ppb 337 38.09 2.73 29.02 42.41 

Particulate matter < 2.5 µm PM2.5 µg/m3 337 9.63 2.48 5.10 26.08 

Particulate matter < 10 µm PM10 µg/m3 337 30.14 10.55 10.60 85.78 

Sulfur dioxide SO2 ppb 337 2.97 2.28 1.16 28.37 

Acetaldehyde CCHO ppb 337 0.64 0.07 0.50 0.98 

Acetone ACET ppb 337 1.89 0.07 1.69 2.11 

Acrolein ACROL ppb 337 0.01 0.02 0.00 0.16 

Benzene BENZ ppb 337 0.18 0.10 0.04 0.79 

1,3-Butadiene BUTA ppb 337 0.13 0.22 0.01 2.61 

Chloroform CHCL ppb 337 0.01 0.03 0.00 0.39 

Cresols CRES ppb 337 0.01 0.00 0.00 0.03 

Ethylene dibromide BRC ppb 337 0.00 0.00 0.00 0.00 

Ethylene dichloride CLC ppb 337 0.01 0.02 0.00 0.21 

Ethylene oxide ETOX ppb 337 0.01 0.01 0.00 0.16 

Formaldehyde HCHO ppb 337 2.48 0.39 1.83 4.00 

Methylene chloride CLME ppb 337 0.04 0.02 0.01 0.20 

Perchloroethylene CL4ET ppb 337 0.01 0.01 0.00 0.05 

Phenols PHEN ppb 337 0.00 0.01 0.00 0.09 

Trichloroethylene CL3ET ppb 337 0.00 0.01 0.00 0.08 

Vinyl chloride CLET ppb 337 0.01 0.02 0.00 0.25 

Abbreviations: ABBR = abbreviation; CMAQ = Community Multiscale Air Quality; CMAQ-HAP = CMAQ 
adapted for selected gas-phase HAPs; HAP = hazardous air pollutant; ppb = parts per billion volume; 
ppm = parts per million volume; MM5 = Fifth-Generation National Center for Atmospheric Research / 
Penn State Mesoscale Model; µg/m3 = micrograms per cubic meter; µm = micrometers (microns); N = 
number; ppm = parts per million volume; STD DEV = standard deviation

Table 1: Descriptive statistics of simulated output. For this study, the
following 26 ground-layer (vertical layer 1) air pollutant and meteorological
values were simulated by the MM5, CMAQ4.4 and CMAQ-HAP models for
337 4 x 4-km cells in or intersecting the boundary of Harris County, Texas,
for July 1 through September 28, 2000. The meteorological and pollutant
measurements shown here are expressed as the 90-day mean of the 24-
hour daily means for each of the 337 cells, the averaging schema used for
this pilot study. 



In this “hot-spot” chronic exposure study, spatial
variations across the 337 cells are of particular interest. To
help us explore the spatial pollutant gradients across the
337 cells in Harris County, we created maps to demonstrate
the spatial distribution of the meteorological and pollutant
variables simulated by the MM5, CMAQ4.4, and CMAQ-
HAP models, using the 90-day mean of the 24-hour daily
means. In Figure 3 (A-K), three-dimensional maps of
concentrations in all 337 cells, as well as two-dimensional
color-coded orientation maps, are displayed, with the cell
with the highest concentration for that particular

meteorological or pollutant variable shown in black. For
purposes of this study, only those variables that tended to
remain in the multivariate LMMs, along with NOx and two
HAPs of special concern in the HGA, are shown. In general,
there was considerable heterogeneity in the concentration
levels across the cells.

Model Performance

In this pilot study we examined potential associations
between gridded simulated meteorological values and
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A. Carbon monoxide

C. Nitrogen oxides

B. Ozone

D. Particulate matter < 2.5 microns

Hourly Ozone
Standard deviation (ppb)
           17.69-19.16
           19.17-20.29
           20.30-21.41
           21.42-22.61
           22.62-24.46
           24.47

Hourly Carbon Monoxide
Standard deviation (ppb)
           0.03-0.05
           0.06-0.08
           0.09-0.10
           0.11-0.15
           0.16-0.22
           0.23

Hourly Nitrogen Oxides
Standard deviation (ppb)
           2.98-5.71
           5.72-7.89
           7.90-10.16
           10.17-13.45
           13.46-21.49
           21.50

Hourly PM < 2.5 µm
Standard deviation (µg/m3)
           3.62-4.79
           4.80-5.65
           5.66-6.77
           6.78-8.50
           8.51-11.60
           11.61

Figure 2: Within-cell variability by standard deviation. Shown, by cell, is the standard deviation for the hourly concentrations (N = 2,160). A. Carbon
monoxide; B. Ozone; C. Nitrogen oxides; and D. Particulate matter < 2.5 microns. Intracell variability, along with baseline concentrations, may be a factor
in hospital admissions.
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pollutant concentrations and health effects. Whether or not
the simulated values are adequate surrogates for exposure is
of key concern. A comprehensive assessment of model
performance by MM5, CMAQ4.4, and CMAQ-HAP is
beyond the scope of this study. Numerous investigators in
the U.S. and elsewhere are, however, evaluating the
performance of CMAQ using increasingly sophisticated
analytic tools (Irwin et al., 2008; Napelenok et al., 2008;
Stein et al., 2007; Zhang et al., 2007). 

In the HGA, the CMAQ4.4 model is currently being run at

4-km resolution daily on multiple processors at the UH-
IMAQS for near-real-time forecasting. Performance
evaluations (spatial and time-series plots and statistics
comparing CMAQ output and observed concentrations
from area monitors) are made available each day online
(www.imaqs.uh.edu/aqfmain.htm) for the 36-km U.S., 12-
km East Texas, and 4-km HGA domains for O3, NO, PM2.5,
temperature, and wind speed. The CMAQ4.4 parameters for
the current simulations are largely identical to those used in
our study, except that our study specifically extracts a
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A. Temperature

C. Ozone

B. Carbon monoxide

D. Particulate matter < 2.5 microns

 Temperature (Degrees Celsius)
90-day means of 24-hr means
           27.63-28.11
           28.12-28.52
           28.53-28.81
           28.82-29.44
           29.45-30.14
           30.15

Particulate matter < 2.5 µm (µg/m3)
90-day means of 24-hr means
           5.10-7.65
           7.66-9.71
           9.72-11.86
           11.87-16.20
           16.21-26.07
           26.08

Ozone (ppb)
90-day means of 24-hr means
           29.02-33.32
           33.33-36.02
           36.03-37.99
           38.00-39.96
           39.97-42.40
           42.41

Carbon monoxide (ppm)
90-day means of 24-hr means
           0.11-0.14
           0.15-0.17
           0.18-0.21
           0.22-0.26
           0.27-0.39
           0.40

Figure 3: Spatial variations, by cell, across Harris County. Shown are 10 MM5-, CMAQ4.4-, or CMAQ-HAP-simulated variables based on the 90-day mean
of the 24-hour daily means for July 1 through September 28, 2000. In both the three-dimensional and two-dimensional maps, the black cell marks the cell
with the highest concentration for that pollutant. A. Temperature; B. Carbon monoxide; C. Ozone; D. Particulate matter < 2.5 microns in diameter; E.
Acetaldehyde; F. Acrolein; G. Formaldehyde; H. Methylene chloride; I. Nitrogen oxides, J. Benzene; and K. 1,3-Butadiene. 



number of HAP species. Nevertheless, the daily
comparisons of the CMAQ4.4 simulations and
concentrations measured at regional CAMS provide useful
information for assessing the some of the strengths and
weaknesses of the year 2000 simulated output used in our
study. 

Comparison of Simulated and Observed Concentrations

We received extensive pollutant and meteorological data
for 2000 from researchers at TCEQ. Depending on the
species and monitor, the databases have undergone varying
degrees of validation since 2000. Working with TCEQ, we
accessed online or received as text files from a number of
divisions within TCEQ all of the available hourly and
intermittent measured ambient pollutant and
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E. Acetaldehyde

G. Formaldehyde

F. Acrolein

H. Methylene chloride

 Acetaldehyde (ppb)
90-day means of 24-hr means
           0.50-0.57
           0.58-0.62
           0.63-0.67
           0.68-0.76
           0.77-0.97
           0.98

Methylene chloride (ppb)
90-day means of 24-hr means
           0.01-0.02
           0.03-0.04
           0.05-0.06
           0.07-0.11
           0.12-0.19
           0.20

Formaldehyde (ppb)
90-day means of 24-hr means
           1.83-2.18
           2.19-2.37
           2.38-2.68
           2.69-3.21
           3.22-3.99
           4.00

Acrolein (ppb)
90-day means of 24-hr means
           0.00-0.01
           0.01-0.02
           0.03-0.04
           0.05-0.09
           0.10-0.15
           0.16

Figure 3 (cont.): Spatial variations, by cell, across Harris County. Shown are 10 MM5-, CMAQ4.4-, or CMAQ-HAP-simulated variables based on the 90-
day mean of the 24-hour daily means for July 1 through September 28, 2000. In both the three-dimensional and two-dimensional maps, the black cell marks
the cell with the highest concentration for that pollutant. A. Temperature; B. Carbon monoxide; C. Ozone; D. Particulate matter < 2.5 microns in diameter;
E. Acetaldehyde; F. Acrolein; G. Formaldehyde; H. Methylene chloride; I. Nitrogen oxides, J. Benzene; and K. 1,3-Butadiene.
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meteorological data. For the purposes of this study, we
extracted only those species we simulated, and we
calculated 90-day means of 24-hour daily means whenever
possible for comparison with the averaging schema used in
this pilot study. Twenty-four hour means were only
calculated if there were a minimum of 20 hourly

measurements. Twenty-six monitors in Harris County
collected data during the study period; however, the
amount of data collected at each varied considerably (Table
2; Figure 4). Descriptive statistics of the pollutant
concentrations measured at Harris County monitors during
the study period are given in Table 3.

Comparisons between the MM5-, CMAQ4.4-, and CMAQ-
HAP-simulated output with concentrations measured at
monitors focused on four monitors because of their location
and the availability of data. Of the HAP species, only
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I. Nitrogen oxides

K 1 3 Butadiene

J. Benzene

 Nitrogen Oxides (ppb)
90-day means of 24-hr means
           3.53-7.12
           7.13-10.24
           10.25-14.00
           14.01-19.04
           19.05-28.14
           28.15

Benzine (ppb)
90-day means of 24-hr means
           0.05-0.12
           0.13-0.21
           0.22-0.37
           0.38-0.71
           0.72-1.73
           1.74

Figure 3 (cont.): Spatial variations, by cell, across Harris County. Shown
are 10 MM5-, CMAQ4.4-, or CMAQ-HAP-simulated variables based on the
90-day mean of the 24-hour daily means for July 1 through September 28,
2000. In both the three-dimensional and two-dimensional maps, the black
cell marks the cell with the highest concentration for that pollutant. A.
Temperature; B. Carbon monoxide; C. Ozone; D. Particulate matter < 2.5
microns in diameter; E. Acetaldehyde; F. Acrolein; G. Formaldehyde; H.
Methylene chloride; I. Nitrogen oxides, J. Benzene; and K. 1,3-Butadiene. 

K. 1,3-Butadiene

1,3-Butadiene (ppb)
90-day means of 24-hr means
           0.01-0.14
           0.15-0.36
           0.37-0.74
           0.75-1.54
           1.55-2.60
           2.61

Figure 4: Continuous air monitoring stations (CAMS). Shown are active
CAMS in Harris County during the study period, July 1-September 28,
2000. See Table 2 for a list of variables measured at each monitor. The
larger red circles denote the four monitor locations that measure the most
chemical species.
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CAMS 
ID # 

EPA AIRS  
ID # 

COL 
ROW NAME CONTINUOUS HOURLY DATA INTERMITTENT 1-HR and 24-HR SAMPLES (#) 

1 48-201-1034 2731 HOUSTON EAST MET, NOx, O3, PM2.5  
8 48-201-0024 2435 ALDINE MET, CO, NOx, NOy, O3, BZ, BUT CARB24 (7), CATMN (15), PM10 (16) 
15 48-201-0026 2932 CHANNELVIEW MET, PM2.5 CATMN (12) 
26 48-201-0029 1638 NW HARRIS NOx, O3, SO2 CATMN (15), PM10 (15) 
35 48-201-1039 2929 DEER PARK MET, CO, NOy, NOx, O3, PM2.5, BZ, BUT CARB1 (33), CARB24 (18), CATMN (13), PM10 (11) 
48 48-201-0068 1936 WHARTON MET  
51 48-201-1040 2827 ELLINGTON MET  
53 48-201-0055 2029 BAYLAND PARK MET, NOx, O3, BZ, BUT CARB1 (7), CATMN (12) 
81 48-201-0070 2530 HOUSTON REG MET, SO2, O3  

145 48-201-0061 3227 SHORE ACRES MET CATMN (15) 
148 48-201-0058 3132 BAYTOWN MET CATMN (14) 
166 48-201-1041 3031 SAN JACINTO MET CATMN (13) 
167 48-201-0057 2630 GALENA PARK MET CATMN (15)  
169 48-201-0069 2630 MILBY PARK MET CATMN (13) 
403 48-201-1035 2630 CLINTON MET, CO, NOx, O3, SO2, BZ, BUT CARB1HR (37), CARB24 (13), CATMN (11), PM10 (28) 
404 48-201-0060 2532 KIRKPATRICK MET  
405 48-201-0046 2533 N WAYSIDE SO2, O3  
406 48-201-0062 2627 MONROE MET, SO2, O3 PM10 (14) 
407 48-201-1037 2331 CRAWFORD CO, NOx, O3 PM10 (14) 
408 48-201-0047 2033 LANG CO, NOx, O3 PM10 (15) 
409 48-201-0051 2127 CROQUET MET, SO2, O3  
410 48-201-0066 1729 WESTHOLLOW MET, O3 PM10 (12) 
603 48-201-0803 2831 HADEN MET, NOx, O3 CATMN (15) 
604 48-201-0804 2933 SHELDON MET, NOx, O3  
607 48-201-0807 3232 BAYTOWN MET, NOx, O3  
608 48-201-0808 3128 LA PORTE MET, NOx, O3  

Abbreviations: BUT = 1,3-butadiene; BZ = benzene; CARB1 and CARB24 = 1-hour and 24-hour samples of carbonyls, including acetaldehyde, acetone and formaldehyde; 
CATMN = Community Air Toxics Monitoring Network, 24-hour samples of ~ 107 hazardous air pollutants; CO = carbon monoxide; MET = meteorological variables  
including wind speed, wind direction, outdoor temperature, dew point temperature, relative humidity, solar radiation, net radiation, and/or precipitation; NOx = nitrogen 
oxides, including nitrogen oxide and nitrogen dioxide; NOy = total reactive nitrogen; O3 = ozone; PM10 = particulate matter < 10 microns (24-hour samples); PM2.5 = 
particulate matter < 2.5 microns; SO2 = sulfur dioxide 

 

Table 2: Harris County monitors. The following monitors (N = 26) were operational for the 90-day study period, July 1-September 28, 2000. Observed data
were received directly from the Texas Commission on Environmental Quality (TCEQ) as well as downloaded from TCEQ online databases. 

A. Temperature (Aldine)
 

A. Temperature (Bayland Park)

Figure 5: Comparison of simulated and observed values. Shown are meteorological and pollutant variables that tended to remain in the multivariate linear
mixed-level regression, as well as nitrogen oxides and benzene (a pollutant of special concern in the Houston-Galveston area). Of the air toxic species, only
benzene had sufficient hourly observed measurements for comparison. For each, scatter plots of the 24-hour daily means and of the hourly pairs for the
90-day study period, as well as a time-series plot for August are shown. A. Temperature; B. Carbon monoxide; C. Ozone; D. Particulate matter < 2.5 microns
in diameter; E. Nitrogen oxides; and F. Benzene. 



NUATRC RESEARCH REPORT NO. 15

benzene had sufficient hourly observed measurements for
comparison. Of the Harris County monitors, the monitors at
Aldine (EPA 48-201-0024), Bayland Park (EPA 48-201-
0055), Clinton (EPA 48-201-1035), and Deer Park (EPA 48-
201-1039) are among the monitors that collect the most
comprehensive data, currently and in 2000. Figure 5 (A-F)
displays scatter plots of the simulated and observed 90-day
mean of the 24-hour daily means and of the hourly pairs, as
well as time-series plots for August 2000, for temperature,
CO, O3, PM2.5, NOx, and benzene. Temperature, CO, O3,
and PM2.5 are plotted in part because they tended to remain
in our multivariate models but also because of their
suspected role in pollution-related cardiopulmonary
disease. Nitrogen oxides and benzene were included based
on recent literature that is suggestive of the role of NOx in
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 SPECIES  ABBR UNIT N  
OBS  

N 
MON 

MEAN OF 
90-DAY* 
24-HR 

MEANS 

STD 
DEV 

MIN  
90-DAY* 
24-HR 
MEAN* 

MAX  
90-DAY* 
24-HR 
MEAN* 

TCEQ 
SOURCE 

90-Day Means from 24-Hour Means Computed from Hourly Measurements 
Relative humidity RH % 8,588 4 72.78 13.45 67.20 86.21 
Temperature TEMP C 46,547 22 28.78 2.02 27.88 30.74 
Carbon monoxide CO ppm 9,875 5 0.43 0.06 0.38 0.53 
Nitrogen oxide NO ppb 16,127 8 6.607 3.80 1.66 12.14 
Nitrogen dioxide NO2 ppb 15,684 8 12.46 3.46 6.74 16.73 
Nitrogen oxides NOX ppb 19,254 11 17.12 7.75 8.18 25.49 
Ozone O3 ppb 34,668 17 27.51 10.22 22.10 36.56 
PM < 2.5 µm PM2.5 µg/m3 6,352 3 12.84 1.28 11.77 13.59 
Sulfur dioxide SO2 ppb 8,195 4 2.78 1.97 1.54 5.72 

CAMS 

Acetaldehyde CCHO ppb 100 2  ID ID ID ID 
Acetone ACET ppb 153 3  ID ID ID ID 
Formaldehyde HCHO ppb 100 2  ID ID ID ID 

CARB 
1HR 

1,3-Butadiene BUTA ppb 2,748 4  0.30 0.31 0.08 4.00 
Benzene BENZ ppb 3,747 4  0.44 0.24 0.20 4.00 

AutoGC 

90-Day Means from Intermittent 24-Hour Canister Measurements 
Acetaldehyde CCHO ppb 31 2 0.98 0.31 0.77 1.20 
Acetone ACET ppb 31 2 0.14 0.02 0.13 0.15 
Formaldehyde HCHO ppb 31 2 9.82 3.00 7.70 11.94 

CARB 
24HR 

1,3-Butadiene BUTA ppb 163 12 0.13 0.22 0.00 0.81 
Benzene BENZ ppb 163 12 0.13 0.10 0.05 0.44 
Chloroform CHCL ppb 163 12 0.01 0.00 0.01 0.02 
Ethylene dichloride CLC ppb 163 12 0.00 0.00 0.00 0.00 
Methylene chloride CLME ppb 163 12 0.07 0.08 0.01 0.26 
Trichloroethylene CL3ET ppb 163 12 0.02 0.01 0.00 0.04 
Vinyl chloride CLET ppb 163 12 0.01 0.01 0.00 0.02 

CATMN 

PM < 10 µm PM10 µg/m3 118 8 29.80 10.77 19.45 54.65 hn PM 

Abbreviations: ABBR = abbreviation;  AutoGC = automated 1-hour averaging gas chromatography; CAMS = 
continuous air monitoring sites; CARB 1HR = carbonyl 1-hour averaging monitors; CARB 24HR = carbonyl 
24-hour averaging monitors; CATMN = Community Air Toxics Monitoring Network; CMAQ = Community Multi-
scale Air Quality; CMAQ-HAP = CMAQ adapted for selected gas-phase HAPs; MM5 = Fifth-Generation National 
Center for Atmospheric Research / Penn State Mesoscale Model; µg/m3 = micrograms per cubic meter; µm = 
micrometers (microns); ID = insufficient data; MAX = maximum; MIN = minimum; N OBS = total number of 
measurements; N MON = number of monitors; PM = particulate matter; ppb = parts per billion volume; ppm =  
parts per million volume; STD DEV = standard deviation; * Actual number varies based on sufficient data for 
calculating each 24-hour mean

Table 3: Descriptive statistics of observed pollutant concentrations. Data are
from all available data at all monitors in Harris County that were operational
between July 1 and September 28, 2000. Data are expressed as 90-day
means of 24-hour daily means, based on available collection methods and
sufficient data. Only CAMS data, and to a lesser extent AutoGC data, have
sufficient hourly data for reasonable comparison with Table 1. For purposes
of this table, only those pollutants that were simulated by the MM5,
CMAQ4.4, and CMAQ-HAP models for this study are included. Data are
from the Texas Commission on Environmental Quality.

 
A. Temperature (Clinton)

 
A. Temperature (Deer Park)

Figure 5 (cont.): Comparison of simulated and observed values. Shown
are meteorological and pollutant variables that tended to remain in the
multivariate linear mixed-level regression, as well as nitrogen oxides and
benzene (a pollutant of special concern in the Houston-Galveston area). Of
the air toxic species, only benzene had sufficient hourly observed
measurements for comparison. For each, scatter plots of the 24-hour daily
means and of the hourly pairs for the 90-day study period, as well as a time-
series plot for August are shown. A. Temperature; B. Carbon monoxide; C.
Ozone; D. Particulate matter < 2.5 microns in diameter; E. Nitrogen oxides;
and F. Benzene. 



health effects studies, possibly as a surrogate, and ongoing
concern about elevated benzene levels in the region.
Because of the importance of good correlation between
simulated and measured wind speed and direction in
simulating pollutant species, we also compared simulated

and observed wind speed and direction at individual Harris
County monitors and for the region (Figure 6). 

In Harris County, more monitors measure O3 than any
other pollutant. This is due in part to the fact that the HGA
is in nonattainment for O3. In addition to health-based
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B. Carbon monoxide (Crawford) B. Carbon monoxide (Deer Park)

C. Ozone (Aldine) C. Ozone (Bayland Park)

Figure 5 (cont.): Comparison of simulated and observed values. Shown are meteorological and pollutant variables that tended to remain in the multivariate
linear mixed-level regression, as well as nitrogen oxides and benzene (a pollutant of special concern in the Houston-Galveston area). Of the air toxic species,
only benzene had sufficient hourly observed measurements for comparison. For each, scatter plots of the 24-hour daily means and of the hourly pairs for the
90-day study period, as well as a time-series plot for August are shown. A. Temperature; B. Carbon monoxide; C. Ozone; D. Particulate matter < 2.5 microns
in diameter; E. Nitrogen oxides; and F. Benzene. 
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warnings, the monitors play an important role in testing O3
simulations generated by CAMx and CMAQ. These
simulations are critical in developing effective control
strategies to achieve attainment of the O3 standard. During
the study period, 17 monitors in Harris County measured

hourly concentrations of O3. Figure 7 compares the
simulated and observed 90-day means of the 24-hour daily
means at these monitors and with the concentration in the
underlying CMAQ cells. In general, and as is observed in
the time-series and hourly scatted plots for ozone (Figure
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C. Ozone (Clinton)  C. Ozone (Deer Park)

E. Nitrogen oxides (Bayland Park) D. Particulate matter < 2.5 microns (Deer Park)

Figure 5 (cont.): Comparison of simulated and observed values. Shown are meteorological and pollutant variables that tended to remain in the multivariate
linear mixed-level regression, as well as nitrogen oxides and benzene (a pollutant of special concern in the Houston-Galveston area). Of the air toxic species,
only benzene had sufficient hourly observed measurements for comparison. For each, scatter plots of the 24-hour daily means and of the hourly pairs for the
90-day study period, as well as a time-series plot for August are shown. A. Temperature; B. Carbon monoxide; C. Ozone; D. Particulate matter < 2.5 microns
in diameter; E. Nitrogen oxides; and F. Benzene. 



5C), the agreement between hourly values is considerably
higher than for the 24-hour means or for the 90-day mean of
the 24-hour daily means. As is also addressed in the
Discussion, CMAQ4.4 consistently demonstrates a
nighttime bias with higher O3 levels at night than are

measured at the monitors, which largely accounts for the
higher mean CMAQ values. In the spatial display shown in
Figure 7, the observed mean O3 values over the 90-day
study period were, in general, consistently lower than the
simulated concentrations. Only five of the 17 monitors had
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E. Nitrogen oxides (Bayland Park)

Figure 5 (cont.): Comparison of simulated and observed values. Shown are meteorological and pollutant variables that tended to remain in the multivariate
linear mixed-level regression, as well as nitrogen oxides and benzene (a pollutant of special concern in the Houston-Galveston area). Of the air toxic species,
only benzene had sufficient hourly observed measurements for comparison. For each, scatter plots of the 24-hour daily means and of the hourly pairs for the
90-day study period, as well as a time-series plot for August are shown. A. Temperature; B. Carbon monoxide; C. Ozone; D. Particulate matter < 2.5 microns
in diameter; E. Nitrogen oxides; and F. Benzene. 

E. Nitrogen oxides (Clinton)

E. Nitrogen oxides (Deer Park) F. Benzene (Clinton)
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sufficient validated data to compute daily means for the
entire 90 days. The mapped comparison might be improved
by adjusting the CMAQ means to match the days for which
there was sufficient observed data, although that
misrepresents the CMAQ spatial distribution used in the
model. The use of a best fit model, which compares the
observed value to the actual cell or any of the contiguous
eight cells, would likely demonstrate better correlation. We
also examined the ranking of the 17 areas of the two sets of
values, which were not significantly correlated. A different
averaging scheme (e.g., daytime only or maximum eight-
hour running average) for O3 may be warranted but, as
noted earlier, introduces other problems as our knowledge
about different lengths and windows of elevated exposures
to different species is rudimentary. In general, except for
temperature, relative humidity, and O3, the observed data
were insufficient to assess hourly performance or spatial

variations in concentrations. Additional work is needed in
this area, possibly using data mining tools, spatial
interpolation techniques, and/or exposure modules to
better assess meaningful exposure patterns and model
performance.

Comparison with NATA ASPEN Model

We also compared concentrations for five selected HAPs
(acetaldehyde, acrolein, benzene, 1,3-butadiene, and
formaldehyde) simulated by our CMAQ4.4 model with the
modified SAPRC99-ARO chemical mechanism, by cell,
with the ASPEN-generated concentrations, by census track,
prepared for the NATA analysis of air toxics risk (U.S.
Environmental Protection Agency, 2007) (Figure 8 [A-E]).
The CMAQ4.4 simulations are of the 90-day mean of the 24-
hour daily means for July 1 through September 28, 2000; the
ASPEN simulated values are annual means for 1999. The
underlying emissions inventories are similar (CMAQ4.4 =
TEI base5b imputed + NEI99 final version 3 + MOBILE6
vehicle emissions vs. NATA = NEI99 final version 3),
although the inventories for the CMAQ4.4 simulation offer
slightly more detailed information and resolution than does
the NEI99 alone for the HGA. The spatial distribution of
concentrations in the two models for the five HAP species
are shown in deciles, relative to the highest value in each
dataset, to compare the relative spatial distribution. The two
models display underlying similarity, although the effect of
secondary photochemical concentrations in the CMAQ4.4
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Figure 6: Comparison of regional wind direction and speed. Shown are
time-series plots of simulated and observed values for wind direction
(UWIND, VWIND) and wind speed (WS) for the region for August 2000. 

Figure 7: Comparison of CMAQ4.4-simulated and observed ozone
concentrations. Shown are 90-day means of the 24-hour daily means of
ozone during the study period, July 1 through September 28, 2000 CST,
for all Harris County monitors (N = 17) with hourly ozone data during this
period, and the same averaging for each of the 337 4 x 4-km cells.



model output is apparent, especially for acetaldehyde,
acrolein, and formaldehyde. In general (except for 1,3-
butadiene), the ASPEN model simulated 1.6-4 times higher
peak concentrations (e.g., full scale NATA benzene = 2.83
ppb vs. 1.74 ppb for CMAQ4.4). This would be expected
since ASPEN, a dispersion model, will provide outputs
more indicative of local-scale conditions as was discussed
earlier. A comparison with annual maximum observed
means from EPA's AirData database (U.S. Environmental
Protection Agency, 2008) suggests that the values simulated
by the CMAQ4.4 model were somewhat closer to the

measured values. The peak annual mean benzene
concentration, for example, at any Harris County monitor in
1999 was 1.50 ppb; in 2000, it was 1.23 ppb. The monitor
locations, however, may or may not capture peak local
values.

Hospital Admission Data

After obtaining Texas Department of State Health Services
(TDSHS) and BCM Institutional Review Board (IRB)
approvals, we purchased 61 fields from the Researcher Use
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A. CMAQ4.4 Acetaldehyde

B. CMAQ4.4 Acrolein

A. NATA Acetaldehyde

B. NATA Acrolein 

Acrolein (ppb)
           0-10%
           11-20%
           21-30%
           31-40%
           41-50%
           51-60%
           61-70%
           71-80%
           81-90%
           91-100%

Full Scale = 0.36 ppb

Acrolein (ppb)
           0-10%
           11-20%
           21-30%
           31-40%
           41-50%
           51-60%
           61-70%
           71-80%
           81-90%
           91-100%

Full Scale = 0.16 ppb

 

Acetaldehyde (ppb)
           0-10%
           11-20%
           21-30%
           31-40%
           41-50%
           51-60%
           61-70%
           71-80%
           81-90%
           91-100%

Full Scale = 0.98 ppb

Acetaldehyde (ppb)
           0-10%
           11-20%
           21-30%
           31-40%
           41-50%
           51-60%
           61-70%
           71-80%
           81-90%
           91-100%

Full Scale = 4.16 ppb

Figure 8: Comparison of CMAQ4.4- and ASPEN-simulated HAP concentrations. Shown are the mean 90-day mean of the 24-hour daily means
concentrations of selected air toxics simulated by the CMAQ4.4 model with the modified SAPRC99-ARO mechanism (left) for July 1-September 28, 2000,
by 4 x 4-km cell (N = 337), and the mean annual concentrations computed by the ASPEN dispersion model for year 1999 (right), by census tract (N = 649),
for the EPA's National Air Toxics Assessment. A. Acetaldehyde; B. Acrolein; C. Benzene; D. 1,3-Butadiene; and E. Formaldehyde.
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Data File of the TDSHS Texas Health Care Information
Collection (THCIC) Hospital Discharge Data for year 2000.
The data fields included hospital name and address; patient
gender, birth date, age, race, ethnicity, and employment
status; residential address and marital status; employer
name and address; facility type; date, time, and type of
admission; length of stay; discharge status; payment source
and total charges; principal ICD-9 diagnosis code plus eight
additional ICD-9 codes for additional conditions; admitting
diagnosis; and illness severity.

From the Texas hospital discharge data we extracted the

records of all patients who were hospitalized between July
1 and October 6, 2000, and who listed a residence in Harris
County (code 201) or a contiguous zip code–the latter to
allow us to include persons who lived in the edge cells,
partially in Harris County and partially in another county.
There were initially 132,411 admissions that fit these
criteria, although a substantial number of these patients
lived in parts of the contiguous counties outside of our
study area. To refine the cohort, we first determined our a
priori exclusions. These included newborns (age 0,
admitted 7/1-10/6/2000, ICD-9 V30-V39), accidents (ICD-9
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Figure 8 (cont.): Comparison of CMAQ4.4- and ASPEN-simulated HAP concentrations. Shown are the mean 90-day mean of the 24-hour daily means
concentrations of selected air toxics simulated by the CMAQ4.4 model with the modified SAPRC99-ARO mechanism (left) for July 1-September 28, 2000,
by 4 x 4-km cell (N = 337), and the mean annual concentrations computed by the ASPEN dispersion model for year 1999 (right), by census tract (N = 649),
for the EPA's National Air Toxics Assessment. A. Acetaldehyde; B. Acrolein; C. Benzene; D. 1,3-Butadiene; and E. Formaldehyde.



E800-E999; E810-E819 = MVA), accidental poisonings
(E860-E869), and various miscodings (e.g., age 100 + V30
[newborn]). The total number of a priori exclusions for the
initial group of patients was 24,154, which included 22,742
newborns, 1,383 accidents, 17 newborns also involved in
an accident, 10 accidental poisonings, and two miscodings.
In addition, 126 records had no ICD-9 diagnosis in the
primary discharge diagnosis field or in any of the eight
“other” diagnosis fields. Thus the total for geocoding before
trimming the edge cells was 108,257. The characteristics of
the study cohort are shown in Table 4.

We then geocoded the patients with residences in the
contiguous counties, focusing as much as possible on ZIP
codes and streets that intersected the edge cells. Because an
intensive effort to geocode all of the adjacent counties to
access the relatively few admissions in the portion of the
edge cells that abutted Harris County was beyond our
resources, we chose to count as 100% successful our
attempt for geocoding the partial edge cells outside Harris
County. In the other-than-Harris-County edge cells, we
geocoded 691 in Brazoria County (county code 039), 680 in
Fort Bend County (code 157), 1,709 in Galveston County
(code 167), 9 in Liberty County (code 291), 1,090 in
Montgomery County (code 339), and 36 in Waller County
(code 473)–for a total of 4,215. Thus our total adjusted
number of hospital admissions was 94,012 in Harris County
(code 201) and 4,215 from the non-Harris County portions
of the edge cells, for an adjusted total number of 98,227. We

included six additional days (October 1-6) of
hospitalization data in our study in order to have this data
for subsequent time-series or case-crossover study designs,
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Figure 8 (cont.): Comparison of CMAQ4.4- and ASPEN-simulated HAP concentrations. Shown are the mean 90-day mean of the 24-hour daily means
concentrations of selected air toxics simulated by the CMAQ4.4 model with the modified SAPRC99-ARO mechanism (left) for July 1-September 28, 2000,
by 4 x 4-km cell (N = 337), and the mean annual concentrations computed by the ASPEN dispersion model for year 1999 (right), by census tract (N = 649),
for the EPA's National Air Toxics Assessment. A. Acetaldehyde; B. Acrolein; C. Benzene; D. 1,3-Butadiene; and E. Formaldehyde.

Mean 48.0 ± SD 23.0 year (range 0–109 year ) 
Age Group (year ) N % of Total % Female 

0-10 3,359 3.4% 43.2% 
11-20 7,691 7.8% 74.5% 
21-30 16,386 16.7% 84.8% 
31-40 14,473 14.7% 72.7% 
41-50 12,624 12.9% 56.0% 
51-60 11,066 11.3% 51.2% 
61-70 10,857 11.1% 53.1% 
71-80 12,721 13.0% 59.0% 
81-90 7,510 7.7% 66.9% 

91-100 1,505 1.5% 76.6% 

Age 

101-110 33 0.03% 90.9% 
65.0% Female (N = 63,820); mean age 46.2 ± SD 23.2 year  
35.0% Male (N = 34,379); mean age 51.4 ± SD 22.3 year Gender 
0.03% Not available (N = 28); mean age 57.0 ± SD 20.1 year   
Hispanic origin 23.8% 22,370 
Not of Hispanic origin 77.1% 75,683 Ethnicity 
Not available 0.2% 174 
American Indian 0.2% 206 
Asian or Pacific Islander 2.0% 1,929 
Black 22.0% 21,622 
White 56.4% 55,410 
Other 19.4% 19,017 

Race 

Not available 0.0% 43 
Abbreviations: N = number; SD = standard deviation 

 

Table 4: Descriptive statistics of study cohort. Patients were included who
listed a residential address in Harris County or an edge cell and who were
admitted into a hospital in Harris County or a contiguous county between
July 1 and October 6, 2000 (N = 98,227), following a priori exclusions.
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in which we might wish to examine lags of 0 to 6 days
depending on the health outcome being studied, using the
same data set. For the current study design, which examines
the potential effect of relatively long-term spatial
differences in simulated pollutant exposure on the
likelihood of adverse health effects, lag times are not
relevant. Indeed, if the spatial distribution of chronic
exposure to pollution as estimated by the 90-day CMAQ-
simulated mean approximates the distribution across all of
2000 (i.e., the ranking of the 337 cells by pollutant is the
same based on a 3-month or 12-month average), then we
could potentially use admissions for all of 2000 in the
current model to gain additional power. Limited resources
for geoaddressing and the need to focus on key
methodological questions in this pilot study restricted our
initial hospital admissions cohort to 98 days.

The included hospitals were compared with lists from the
THCIC and the Joint Council on Accreditation of Healthcare
Organizations (JCAHO) for completeness in terms of
reporting hospitals and percentage of beds. The dataset
included data from 95 hospitals in the region (77.6% of
hospitals and 96.0% of hospital beds). Two significant
omissions included Lyndon B. Johnson General Hospital
(LBJ; 324 beds) and Quentin Meese Hospital (75 beds).
These hospitals are part of the Harris County Hospital
District (HCHD), which supplies much of the medical care
for the uninsured and underinsured in the region. We were
not successful in obtaining 2000 discharge data directly
from the HCHD for these two hospitals. Although both are
general hospitals, LBJ has a large obstetrics program, with
approximately 5,000 births each year, and Quentin Meese
has fewer than 250 admissions per year. Thus we are
hopeful that the omission of these two hospitals will have a
relatively small effect on the study. Ben Taub General
Hospital, the largest of the HCHD hospitals, was included in
the data we received.

All patients were categorized by discharge diagnosis
(Principal Discharge Diagnosis Code [ICD-9-CM] or Other
Diagnosis Code 1, 2 or 3 [of eight]). The outcomes of
primary interest for this study were, by discharge diagnosis,
admission for cardiovascular, respiratory, or cardiovascular
or respiratory (either) disease or symptoms. These
diagnoses have been associated with ambient air pollution
in other studies (Braga et al., 2001; Brunekreef and Holgate,
2002; Burnett et al., 1997; Burnett et al., 1997; Burnett et al.,
1999; Dominici et al., 2006; Lee et al., 2007; Lee et al., 2007;
Lee et al., 2006; Magas et al., 2007; Maheswaran et al., 2005;
Maheswaran et al., 2005; Ricci and Straja, 2006; Schwartz,
1999; Thurston, 2006; Wellenius et al., 2005; Yang and
Chen, 2007; Yang et al., 2004; Zanobetti et al., 2000). The

“Other” category is useful as a possible control and for
assessing possible bias. Because this category contains
17,335 new mothers, it is younger (mean age 37.2 vs. 64.5
years) and more female (72.6% vs. 57.9% female) than, for
example, the cardiovascular group. Among the new
mothers, however, it should be noted that 377 had either a
cardiovascular or a respiratory diagnosis as well. A
description of the four diagnostic groups follows.

• Cardiovascular (ICD-9 390-459, 745-747, 772-773, 776,
785, 790, 972, 986)
N = 35,436 (36.1%, 57.9% F)
Mean age 64.5 ± SD 17.1 years (range 1-109 years)

• Respiratory (ICD-9 460-519, 748, 769-770, 786, 975, 987)
N = 17,137 (17.5%, 55.0% F)
Mean age 58.1 ± SD 22.7 years (range 1-108 years)

• Cardiovascular or respiratory (either)
N = 43,516 (44.3%, 55.4%F)
Mean age 61.6 ± SD 19.8 years (range 1-109 years)

• Other 
N = 54,711 (55.7%, 72.6% F)
Mean age 37.2 ± SD 19.3 years (range 1-104 years)

Geocoding of Hospital Admissions

We used ArcGIS, version 9.2 (ESRI, Redlands, CA), and
two versions of the most detailed base map currently
available for Harris County, the Southeast Texas Addressing
and Referencing Map (STAR*Map; v. 2.0, 2004 and v. 4.0,
2006), for geocoding the addresses. For the July 1 through
October 6, 2000 period, we were able to geocode (i.e., map
by listed residential address) 84,729 (86.3%) patients out of
the total of 98,227 who fit our inclusionary criteria; we were
not able to geocode 13,498 patients. Within Harris County,
there were 94,012 patients (95.7% of the 98,227). Of the
94,012 patients, 85.6% could be geoaddressed. As noted
earlier, 4,215 (4.3% of total) patients were located in the
non-Harris County portions of the edge cells. Because of the
small number and the time involved in geoaddressing
additional counties outside of our study area, we assumed
these 4,215 to be 100% of the geoaddressable records in
these small areas; thus our percentage of geoaddressed
records, i.e., 86.3%, is probably very slightly overinflated. 

The GIS Geocoding Service Address Locator gives a zero
or low score if the ZIP code or the street name or the street
address does not match. Relatively simple problems found
with nongeocodable records, which were often resolvable
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using other databases, included: 

• street address did not match ZIP code;
• street number out of range (e.g., patient address is listed

as 13500 Fannin when STAR*Map shows that Fannin
street numbers range from 100 to 12000);

• street name incorrectly spelled (usually a typographical
error);

• street name not found; and 
• ZIP code not found.

Addresses that did not geocode using STAR*Map were
reviewed for spelling or other errors, as well as searched for
in other databases. We used online address locators, postal
databases, the 1999 and 2006 editions of the Houston Harris
County Atlas Key Map (Key Maps, Inc., Houston, TX), and
street indexes to help with the geoaddressing. Most of the
time, records were not picked by the geocoding engine due
to small differences in street name spelling or a ZIP code
that did not match the street address. ZIP codes were
extracted from various online map sources (Google Maps,
Yahoo Maps, and MapQuest) or compared with neighboring
ZIP codes and edited when a reasonable match could be
found. For approximately 2,500 records, we used Google
Maps and Yahoo Maps to extract location coordinates
directly from the Universal Resource Locator (URL)
window, when a good match was found. These coordinates,
generated in the Geographic Coordinate System (GCS) in
decimal degrees, were then exported to ArcGIS for
additional processing (creation of point layer and projection
to the coordinate system used in the analysis). Records were
also reviewed for other potential errors or concerns, such as
the provider name accidentally being listed as the residence
or a legitimate residence in a long-term hospital or nursing
home. For out-of-range street numbers we geocoded to the
nearest street number as long as the geocoded point fell
within the same 4 x 4-km cell. 

The 84,729 geocoded addresses are shown in Figure 9.
Meticulous records were maintained, including the degree
of geocoding accuracy (by percentage) and any address
adjustments. Some of the problems encountered for the
13,548 records that we could not geocode included

• no address information;
• an address that was determined to be “not good” for

various reasons and could not be resolved;
• patients listed as “unknown” address;
• patients listed as homeless;
• only a PO Box given; and 
• incomplete information.

Once geoaddressed, each record was assigned X
(longitude) and Y (latitude) coordinates, initially using a
freeware script. Since version 9.2, ArcGIS has the capability
to assign XY coordinates as well. Use of STAR*Map and
improvements in digital base maps for geoaddressing has
facilitated extracting accurate XY coordinates, which were
previously hampered in part by addressing algorithms that
often positioned addresses based on beginning and end
numbers of street segments, and side-of-street numbering
conventions. Addition of XY coordinates reduces the
potential for error, reduces computing time considerably,
and produces a cleaner database for storage and/or review.
Included in the database is information on the degree of
accuracy of the match, and thus the accuracy of the XY
coordinates. We aimed for exact matches when possible,
followed by sufficient accuracy for future 1 x 1-km analyses.

Geocoded Records vs. Nongeocoded Records.

We compared the characteristics of those patients that we
were able to geocode with those that we were not able to
geocode to examine if any bias was introduced by the
geocoding process. Based on individual characteristics from
the THCIC database, the 84,729 geocoded records were, in
general, statistically different from those records that did
not geocode (13,498) (Table 5):

• Age: T-Test P < 0.0001
Older individuals were more likely to geocode than
younger individuals (48.3 vs. 46.6 years)
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Figure 9: Geoaddressed hospital admissions. 84,729 (86.3%) were able
to be geoaddressed by residential address.
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• Gender: Chi-square P < 0.0001
Females geocoded more often than did males (86.8%
female vs. 85.2% male)

• Race: Chi-square P < 0.0001
Whites (86.5%) and Asians (86.3%) were more likely to
geocode than Blacks (85.0%). 

• Discharge diagnosis of cardiovascular: Chi-square P <
0.0001
Individuals with a cardiovascular diagnosis (N = 30,960)
were more likely to geocode than individuals with other
diagnoses (87.4% vs. 85.6%).

• Discharge diagnosis of respiratory: Chi-square P = 0.0011

Individuals with a respiratory diagnosis (N = 14,916)
were more likely to geocode than individuals with other
diagnoses (87.0% vs. 86.1%).

These findings suggest that, in general, the patients in our
statistical model likely slightly underrepresented persons of
color, who tend to have a lower socioeconomic status. Since
our “hot spot” analyses seek to delineate areas of where
residents are likely to be more vulnerable to the effects of
elevated pollution, which often correlates with lower
socioeconomic status, underrepresentation of persons of
color may dilute our findings (regression towards the null).
Thus, although this bias is of concern, in context of our
hypothesis it is unlikely to lead to a type 1 error, i.e., a
determination of “hot spots” of elevated “exposure” and
health effects when there are none. 

Demographic Data

Using Census 2000 data obtained from the U.S. Census
Bureau (http://factfinder.census.gov), we obtained block
and block-group data for Harris County. In general, three
types of data are available:

• Summary File 1 (100% data) 
Actual counts and information, such as age, sex, race,
ethnicity, and whether residence is owned or rented,
collected from individual surveys. 

• Summary File 2 (100% data) 
Population and housing characteristics iterated for
different races and ethnicities.

• Summary File 3 (sample data)
Detailed population and housing data, such as place of
birth, education, employment status, commuting,
income, and year structure built, collected from a 1-in-6
sample and weighted to represent the total population.

SF1 data are available at the block level, the highest level
of resolution available (approximately 14 households).
Income, education, and commuting status are available at
the block-group level. 

Because we were interested in calculating the
demographic characteristics for each of the 337 4 x 4-km
cells in Harris County, we needed to calculate this
information from the appropriate files at the block or block-
group level of resolution. Once all the data were
downloaded, they were joined to block and block-group
spatial data files (shapefiles or personal geodatabase files)
using a unique identifier, and then imported into our
ArcGIS map of Harris County using the appropriate
projection. We then proceeded with apportioning the data
to the 337 4 x 4-km cells. 

Apportioning Data to Cells

Apportioning data of a different shape (e.g., blocks) to
another shape (e.g., a 4 x 4-km cell) on a different mapping
layer requires adding appropriate percentages of data from
data blocks or block groups that are transected to the data
wholly encompassed by the “cookie cutter” using area
determinations. A Visual Basic for Applications (VBA)
script was used to calculate the area for each block, block
group, and water polygon.

The basic spatial processing steps were performed using
ArcGIS 9.2 and apply to both blocks and block groups as
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CHARACTERISTIC 
GEOCODED 
N = 84,729  

(%GC = 86.3%) 

NOT GEOCODED 
N = 13,498  

(%NGC = 13.7%) 
P-VALUE TOTAL 

(% of 98,227) 

Age (years) 48.3 ± SD 23.1 46.6 ± SD 22.4 < 0.0001T 48.0 ± SD 23.0 
Gender   55,430 (86.8%) 8,390 (13.2%) 63,820 (65.0%) 
  29,274 (85.2%) 5,105 (14.9%) 

< 0.0001C 
34,379 (35.0%) 

Race  18,386 (85.0%) 3,236 (15.0%) 21,622 (22.0%) 
  47,928 (86.5%) 7,482 (13.5%) 55,410 (56.4%) 
  1,664 (86.3%) 265 (13.7%) 1,929 (02.0%) 
  177 (85.9%) 29 (14.1%) 206 (00.2%) 
  16,537 (87.0%) 2,480 (13.0%) 

< 0.0001C 

19,017 (19.4%) 
Cardiovascular 30,960 (87.4%) 4,476 (12.6%) < 0.0001C 35,436 (36.1%) 
Respiratory 14,916 (87.0%) 2,221 (13.0%) 0.0011C 17,137 (17.5%) 
Either 37,973 (87.3%) 5,543 (12.7%) < 0.0001C 43,516 (44.3%) 

Abbreviations:  C = Chi-Square; Either = cardiovascular or respiratory; GC = geocoded; N = number; 
NGC = not geocoded; T = Student T-Test 

 

Table 5: Characteristics of the patients by geoaddressable status. Of the
98,277 patients, 84,729 (86.3%) could be geoaddressed to their residential
address. 



well as to other Census 2000 variables. They are briefly
described below.

1. Calculate block polygon areas and store values in a
new field (block_sqft).

2. Intersect block and water polygons and delete
intersected water polygons, resulting in “land
blocks.”

3. Recalculate land-block polygon areas and store
values in a new field (land_block_sqft).

4. Intersect the land_block_sqft and 4 x 4-km
cell_polygon layers to create land_cell_block.

5. Recalculate land-cell blocks polygons and store
values in a new attribute field (land-cell_block_sqft).

6. Add a new field (percent_land_area) and calculate
percent_land_area:

where
land_cell_block_sqft = land block area in square feet

inside each 4 x 4-km cell after intersection with cell
polygons

land_block_sqft = original land block area in square feet
before intersection with cell polygons 

percent_land_area = percent land area inside each cell
polygon

7. Calculate population for each land-cell block
polygon: 

where
pop2000 = total population from Census 2000
cell_pop2000 = population for the land-cell block

polygon
8. Use the summarize function to calculate total block

population and land block area per cell
(cell_pop2000 field).

9. Perform a table join between the 4 x 4-km
cell_polygon layer and summarized table. 

10. Create two new attribute fields to store population
per cell (scell_pop2000) and block area per cell
(scell_block_sqft) from joined table.

11. Add new attribute field to store population density
per cell (pop_dens). Calculate population density per
cell polygon as follows:

12. Remove table join.

To calculate the average median income of each 4 x 4-km
cell, an algorithm developed by the University of Arizona
was used. First, the weighted average of all the cropped
areas of block groups in each 4 x 4-km cell was calculated.
For instance, if there were median incomes of $65,000,
$48,000, and $75,000 for block groups having 2,500, 3,200,
and 450 households respectively, the weighted average
median income was calculated as:

In other words, average median income equals

where 
mi = median income of the cropped block group, and
hh = number of household of the cropped block group.
Calculation of census demographic characteristics by 4 x

4-km cells was very time-consuming process. There are
approximately 15-20 steps for each demographic field, and
a characteristic such as age has 46 category fields (23 age
categories, by gender). Done manually, it is easy to commit
errors, and the process for extracting a demographic
characteristic such as age can take up to one week to
complete. The Baylor College of Medicine (BCM) team
developed two automated programs (for block and block-
group data) using python scripts that have been developed
for ESRI's GIS Model Builder interface. These scripts
automated data extraction and apportionment for our pilot
study. The custom automated program took approximately
10 minutes per field for preparation, and then
approximately 9 hours of unsupervised computer time to
extract the data and do the calculations. 

Demographic Characteristics

Demographic data apportioned to each of the 337 4 x 4-
km cells for subsequent inclusion in the statistical model
included the following variables, briefly described below.
The level of resolution is shown in parentheses.

• Nighttime population count (block)
Mean 14,116 ± SD 14,327; median 8,672; range 77-74,895

• Nighttime population density (per square mile) (block)
Mean 2,316 ± SD 2,318; range 12-12,172 

• Percentage non-White (block)
Mean 42.3% ± SD 26.5%; median 35.0%; range 5.1%-
99.5%

40

Using EPA’s CMAQ Model and Hospital Admission Data to Identify Multipollutant “Hot Spots” in Harris County, Texas

NUATRC RESEARCH REPORT NO. 15

_sqftland_block
 block_sqftland_cell_ nd_areapercent_la =  

arealandpercentpoppopcell __*20002000_ =  

sqftblockscell

popscell
denspop

__
2000__ =  

17.886,56
)45032002500(

)450000,75200,3000,48500,2000,65(income  median  Average =
++

++= xxx

 

∑
∑=

)(

)*(

hh
hhmi



NUATRC RESEARCH REPORT NO. 15

• Percent owner-inhabited housing (block)
Mean 70.7% ± SD 19.6%; median 75.1%; range 4.7%-
99.2%

• Median household income (block group)
Mean $52,293 ± SD $16,985; median $52,119; range
$19,450-$114,238

• Percent with ≥ one year of college (block group)
Mean 20.0% ± SD 15.9%; median 17.7%; range 0%-80.5%

• Percent ≥ 16 yr who commute 30 or more minutes to work
(block group) 
Mean 36.0% ± SD 23.2%; median 37.8%; range 0%-96.4%

Maps of the demographic variables by 4 x 4-km cell are
shown in Figure 10 (A-F).

DATA ANALYSIS

As noted earlier, the hypothesis being tested is that the
age-adjusted rates, by discharge diagnosis, of Harris County
residents hospitalized during the study period differ
geographically among the 337 4 x 4-km cells that overlay
the county and correlate with MM5-, CMAQ4.4- and
CMAQ-HAP-simulated meteorological values and/or
concentrations of ambient air pollutants, controlling for
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A. Nighttime population density

C. Percent non-white

B. Median household income

D. Percent with ≥ one year of college

Population / square mile
          12 - 1,000
          1,001 - 2,000
          1,001 - 2,000
          1,001 - 2,000
          1,001 - 2,000

Median Household Income ($)
          19,451 - 25,000
          25,001 - 50,000
          50,001 - 70,000
          70,001 - 115,000

College
          5% - 10%
          11% - 15%
          16% - 20%
          21% - 25%
          26% - 29%

Percent Non-White
          5% - 20%
          21% - 40%
          41% - 20%
          61% - 25%
          81% - 100%

Figure 10: Demographic variables by 4 x 4-km cell. Shown are A. Nighttime population density; B. Median household income; C. Percent non-white; D.
Percent with ≥ one year of college; E. Percent who commute 30 minutes or more one way to work daily; and F. Percent owner-inhabited housing.



other variables.
The study design is a mixed-effect ecological correlation

analysis in which the unit of analysis is the 337 4 x 4-km
cells. The cohort (population at risk) was residents of any of
the 337 4 x 4-km cells overlaying Harris County as
determined by Census 2000 data (U.S. Census Bureau,
2000); cases equaled those who listed a residence in any of
these 337 cells and who were admitted to a hospital in
Harris County or any of the contiguous counties between
July 1 and October 6, 2000. The outcome (dependent
variable) of interest, as determined by discharge diagnosis,
was cardiovascular disease, respiratory disease, or
cardiovascular or respiratory disease (either). Independent
(predictor) variables (N = 32) examined included seven
demographics factors, two meteorological variables, five
CAPs, 16 HAPs, and two PCA factors (see description of
PCA later in this section) to represent the 16 HAPs.

Statistical Methods

SAS 9.1 was used for the majority of the statistical work,
with some ancillary work done using Microsoft Excel and
Access, SPSS, ESRI's ArcGIS and Geostatistical Analyst,
and R. Our initial statistical work, prior to building the
models, included extensive examination and validation of
the raw data, creation of numerous secondary databases that
would be needed to build the models, and validation of the
secondary databases and their associated scripts. In most
instances, the databases and SAS scripts were reviewed by
at least two others on the team, in addition to statisticians

Drs. Chan and Han. Refinements and/or corrections were
made as appropriate. Part of the initial statistical work
included extensive visual and statistical exploration of the
admissions discharge records, Census 2000 data and
collection methods, simulated meteorological values and
pollutant concentrations, and measured pollutant
concentrations. We also produced and examined a wide
array of descriptive statistics and graphs; developed scripts
for inputting the immense amount of CMAQ-simulated data
(for each species we had 727,920 hourly values), converting
UTC to CST, identifying newborns, creating secondary
databases with various averaging times, testing the
discharge diagnosis codes and extraction scripts for
accuracy and completeness, and assessing other aspects of
the statistical scripts and data; examined exclusions and
geocoded vs. unable-to-geocode patients for possible bias;
and explored different ways to handle the 16 HAPs in the
model, including the use of ranking, PCA to reduce the
dimensionality of the HAPs, and inclusion of all or of
representative HAPs based on chemical properties,
correlation, or other factors.

After extensive assessment of the data and several
unsuccessful evaluations of potential models, we chose the
statistical model for the analyses. A number of factors in
this spatial analysis, not least of which were factors
introduced by the gridded infrastructure, made choosing
the model more challenging than we had anticipated. We
first attempted using the Generalized Estimating Equation
(GEE) method, in which we assumed that the number of
hospital admissions in each cell was distributed as a
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E. Commute ≥ 30 minutes to work F. Owner-inhabited housing

Commute >= 30 minutes
          10% - 30%
          31% - 40%
          41% - 50%
          51% - 60%
          61% - 76%

Home Ownership (%)
          9% - 40%
          41% - 60%
          61% - 70%
          71% - 90%
          91% - 98%

Figure 10 (cont.): Demographic variables by 4 x 4-km cell. Shown are A. Nighttime population density; B. Median household income; C. Percent non-white;
D. Percent with ≥ one year of college; E. Percent who commute 30 minutes or more one way to work daily; and F. Percent owner-inhabited housing.  
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Poisson random variable. For this analysis, the link was log-
transformed and the offset variable was the population in
each cell. This approach, however, was computationally
unstable, most likely because of the marked differences in
population size across the 337 cells, as well as because of
extreme rare events in a few cells. The result was that the
models did not converge computationally, and this
approach was abandoned.

Consequently, we decided to use the log-transformed age-
adjusted rate for each gender group as the outcome variable
and a LMM to examine the relationship between hospital
admissions and simulated air pollution (“exposure”),
adjusting for significant gender and cell-specific
demographic factors. The 337 4 x 4-km cells were the unit
of analysis. For this spatial analysis, we used a two-part
approach. The mixed-effects regression model takes into
consideration correlated outcome (i.e., it is a correlated-
outcome model). By taking into account the correlated
nature of the outcome, this method accommodates
“missing” observations due to extreme age-adjusted rates.
We therefore first created a specified correlation structure
for outcome for each of the 337 4 x 4-km cells. This was
followed by examining the spatial distributions of the
residuals obtained from the fitted models. 

Age-Adjusted Rates by Gender

Next we calculated the age-adjusted rates for each of the
337 cells. This was necessary to remove any spatial
differences in hospital admissions that might be attributable
to residents in some cells being older (or younger). Based on
recent available Census 2000 age categories and
reasonableness, we formed from the 23 Census 2000 age
categories nine groups that corresponded to 8 of the 11
categories we had used to describe the admissions data (the
top three categories were combined, as census data do not
categorize after age 80) by gender: 0-9, 10-19, 20-29, 30-39,
40-49, 50-59, 60-69, 70-79, and 80 years of age and older.
The age-adjusted rates were then calculated as follows.

• For each of the 337 cells, we calculated the crude
admission rate (using Census 2000 counts extracted for
each cell as the denominator) for each age group and
gender for 

-  admissions with a cardiovascular discharge diagnosis,
-  admissions with a respiratory discharge diagnosis, and
-  admissions with either a cardiovascular or respiratory 

discharge diagnosis.
• We then multiplied the crude admission rate for each age

and gender group by the total Census 2000 population for

the 337 cells by age category and gender. This resulted in
18 “adjusted counts” for each cell (nine age groups by
gender).

• For each cell, by gender, we added all of the adjusted
counts, and divided this sum by the total Census 2000
male or female population for all 337 cells. The resulting
ratio is the age-specific admission rate for each cell by
gender.

Small-Cell Adjustment

As noted above, to develop the age-adjusted rate, we used
nine age categories, by gender, resulting in 18 categories for
each of the 337 cells. However, some of the 337 cells had
small populations, which could lead to bias. We therefore
did the following after extensive examination of the data:

_ Ranked the 337 cells by total population. In the lowest
5th percentile, 17 cells had a population less than 127.

_ Combined each of the 17 small-population cells with the
most populous contiguous cell. By column-row number,
this resulted in the following double-cell combinations
(and one triple): 2931-2932; 3130-3129; 1336-1337; 1732-
1731; 1134-1133; 1235-1135-1236; 3429-3430; 3042-2942;
1436-1437; 1137-1237; 1136-1036; 3031-3032; 1234-1233;
940-939; and 1335-1435.

_ Within each cell or cell combination, we dropped the
admission rate of any of the 18 age-gender groups if the
number in the group was °‹ 5.

_ Using our averaging schema of interest, i.e., the 90-day
mean of the 24-hour daily means, we (1) ranked and
inspected each cell for age-adjusted outliers for rate of
admission for cardiovascular, respiratory, or
cardiovascular or respiratory (either) disease, and (2)
dropped age-gender categories defined as outliers (by rate
or multiple admissions). This led to our dropping nine
specific age-groups by gender subgroups from a total of
five 4 x 4-km cells. All of these subgroups had a
population < 27 and the majority tended to be older age
groups in which several individuals had multiple
admissions. The 4 x 4-km cells, except for these small
adjustments, remained intact.

Correlation Between Variables

As part of the data exploration, as well as a component of
the development of PCA factors, we examined the
correlation between each of the 16 HAPs, as well as the
correlation between selected CAPs, HAPs, and
demographic variables. Pearson's correlation coefficients for
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these two sets of variables are shown in Tables 6 and 7. The
degree of correlation between variables tended to be high.

Principal Components Analysis

We explored the use of PCA to identify a small number of
factors that would explain much of the variance, i.e., the
pattern of correlation, in the 16 HAP variables in our study.
By definition, each component (PCA factor) defines a
projection that encapsulates the maximum amount of
variation in a dataset and is orthogonal (and therefore
uncorrelated) to the previous principal component of the
same dataset. After viewing the shape of the scree plot of the
eigenvalues, we chose two factors, each with eigenvalues >
2, to represent the HAP set. The choice is somewhat
subjective, in our case based largely on the gap between the
second and third factors, a decision to include only
components that represented > 10% of the total variance,
and a desire to reduce the number of variables in the full
statistical model. The two factors selected accounted for
42.9% (eigenvalue 6.9) and 15.1% (eigenvalue 2.4),

respectively, of the variability of the 16 components
examined, for a cumulative total of 57.9%. Inclusion of
factors with eigenvalues above > 1 would have retained two
additional factors, with the four factors accounting for
76.0% of the variability. Future work with this dataset
might wish to include four factors. Varimax rotation of the
matrix was selected to enhance the interpretability of the
factors. Although the unrotated and rotated factors explain
the same total amount of variation, varimax rotation rotates
the orthogonal principal component axes so that the
variability within the data set explained by each axis is
maximized (Dunteman, 1989). The unrotated and rotated
factors are shown in Table 8.

Univariate Linear Mixed-Effects Model 

We used the LMM to examine the individual effect of
each of the potential predictors variables on our outcomes
of interest, age-adjusted hospital admission rates by
discharge diagnosis for each of the 337 cells for Due to the
skewed nature of the outcome variable, the age-adjusted
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 CCHO ACET ACROL BENZ BUTA CHCL CRES BRC CLC ETOX HCHO CLME CL4ET PHEN CL3ET CLET 

CCHO 1.000 0.316‡ 0.595‡ 0.607‡ 0.628‡ 0.317‡ 0.739‡ 0.430‡ 0.436‡ 0.080 0.822‡ 0.360‡ 0.407‡ 0.551‡ 0.192† 0.443‡ 

ACET 0.319‡ 1.000 0.084 -0.079 0.158* 0.209† -0.227‡ 0.033 0.056 -0.247‡ 0.481‡ -0.353‡ -0.173* 0.029 -0.163* 0.048 

ACROL 0.595‡ 0.084 1.000 0.814‡ 0.916‡ 0.309‡ 0.528‡ 0.541‡ 0.529‡ 0.290‡ 0.635‡ 0.117* -0.103 0.933‡ 0.313‡ 0.589‡ 

BENZ 0.607‡ -0.079 0.814‡ 1.000 0.699‡ 0.230‡ 0.756‡ 0.480‡ 0.550‡ 0.228‡ 0.697‡ 0.314‡ 0.073 0.563‡ 0.342‡ 0.545‡ 

BUTA 0.628‡ 0.158* 0.916‡ 0.699‡ 1.000 0.330‡ 0.556‡ 0.471‡ 0.459‡ 0.094 0.594‡ 0.113* -0.010 0.856‡ 0.183† 0.520‡ 

CHCL 0.317‡ 0.209† 0.309‡ 0.230‡ 0.330‡ 1.000 0.157* 0.209† 0.152* -0.015 0.328‡ 0.005 -0.013 0.220‡ 0.051 0.193† 

CRES 0.739‡ -0.227‡ 0.528‡ 0.756‡ 0.556‡ 0.157* 1.000 0.437‡ 0.449‡ 0.154† 0.578‡ 0.568‡ 0.481‡ 0.562‡ 0.336‡ 0.429‡ 

BRC 0.430‡ 0.033 0.541‡ 0.480‡ 0.471‡ 0.209† 0.437‡ 1.000 0.678‡ 0.075 0.485‡ 0.044 -0.078 0.545‡ 0.165† 0.789‡ 

CLC 0.436‡ 0.056 0.529‡ 0.550‡ 0.459‡ 0.152* 0.449‡ 0.678‡ 1.000 0.127† 0.579‡ 0.039 -0.119† 0.505‡ 0.258‡ 0.905‡ 

ETOX 0.080 -0.247‡ 0.290‡ 0.228‡ 0.094 -0.015 0.154† 0.075 0.127† 1.000 0.083 0.260‡ -0.005 0.237‡ 0.406‡ 0.086 

HCHO 0.822‡ 0.481‡ 0.635‡ 0.697‡ 0.594‡ 0.328‡ 0.578‡ 0.485‡ 0.579‡ 0.083 1.000 0.106 0.024 0.585‡ 0.274‡ 0.540‡ 

CLME 0.360‡ -0.353‡ 0.117* 0.314‡ 0.113* 0.005 0.568‡ 0.044 0.039 0.260‡ 0.106 1.000 0.686‡ 0.102 0.246‡ 0.023 

CL4ET 0.407‡ -0.173* -0.103 0.073 -0.010 -0.013 0.481‡ -0.078 -0.119† -0.005 0.024 0.686‡ 1.000 -0.085 0.023 -0.117† 

PHEN 0.551‡ 0.029 0.933‡ 0.786‡ 0.856‡ 0.220‡ 0.562‡ 0.545‡ 0.505‡ 0.237‡ 0.585‡ 0.102 -0.085 1.000 0.245‡ 0.594‡ 

CL3ET 0.192† -0.163* 0.313‡ 0.503‡ 0.183† 0.051 0.336‡ 0.165† 0.258‡ 0.406‡ 0.274‡ 0.246‡ 0.023 0.245‡ 1.000 0.200† 

CLET 0.443‡ 0.048 0.589‡ 0.545‡ 0.520‡ 0.193† 0.429‡ 0.789‡ 0.905‡ 0.086 0.540‡ 0.023 -0.117† 0.594‡ 0.200† 1.000 

Abbreviations (in order by table listing): CCHO = acetaldehyde; ACET = acetone; ACROL = acrolein; BENZ = benzene; BUTA = 1,3-butadiene; CHCL = chloroform; CRES = 
cresols; BRC = ethylene dibromide; CLC = ethylene dichloride; ETOX = ethylene oxide; HCHO = formaldehyde; CLME = methylene chloride; CL4ET = perchloroethylene; 
PHEN = phenols; CL3ET = trichloroethylene; CLET = vinyl chloride; CMAQ = Community Multiscale Air Quality; CMAQ-HAP = CMAQ adapted for selected gas-phase HAPs; 
HAP = hazardous air pollutant; * = P-value < 0.05; † = P-value < 0.001; ‡ = P-value < 0.0001 
 

Table 6: Pearson's correlation coefficient matrix. Shown here are 16 HAPs simulated by the CMAQ4.4 and CMAQ-HAP models for July 1 to September
28, 2000, in Harris County, Texas. The averaging schema used is the 90-day mean of the 24-hour daily means for the 337 cells, the averaging schema
used for this pilot study. The strength of correlation between two variables is reflected in the size of the coefficient and in the P-value. 
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rates were log-transformed before the LMM analyses. The
correlation of the outcome variable between male and
female within a cell is assumed to be the same for all cells
and two outcomes from different cells are assumed to be
independent. In statistical terms, this means that the
correlation was a bloc-diagonal structure with each block
being compound symmetry. The independent variables
examined included gender, percent with one or more years
of college, median household income, percent non-White,
percent owner-inhabited housing, percent 16 years of age or
older who commute to work more than 30 minutes one-way
daily, nighttime population density, two meteorological
variables, five CMAQ4.4-simulated CAPs, 16 CMAQ4.4- or
CMAQ-HAP-simulated HAPs, and two PCA factors, rotated
using the varimax method. To reduce potential ecologic bias
in the pollutant averages across the 337 cells from
confounding by demographic variables, each of the
meteorological and pollutant variables was preadjusted for
the demographic variables (Lipfert, 1994). This multistage
approach helps identify potential associations between the
outcome variable, i.e., log(age-adjusted hospital admission
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 CCHO ACET BENZ BRC HCHO PHEN CO 03 NOx PM2.5 SO2 M-INC  %MIN EDUC OWN POP 

CCHO 1.000 0.316‡ 0.607‡ 0.430‡ 0.822‡ 0.551‡ 0.420‡ -0.396‡ 0.652‡ 0.551‡ 0.502‡ -0.248‡ 0.083 0.031 -0.102 0.051 

ACET 0.316‡ 1.000 -0.079 0.033 0.481‡ 0.029 -0.367‡ 0.464‡ -0.359‡ 0.204† -0.150* 0.205† -0.435‡ -0.257‡ 0.449‡ -0.446‡ 

BENZ 0.607‡ -0.079 1.000 0.480‡ 0.697‡ 0.786‡ 0.159* -0.590‡ 0.626‡ 0.130* 0.511‡ -0.266‡ 0.166* 0.026 -0.170* 0.012 

BRC 0.430‡ 0.033 0.480‡ 1.000 0.480‡ 0.545‡ -0.035 -0.247‡ 0.296‡ 0.007 0.365‡ -0.192† 0.029 -0.095 0.016 -0.115† 

HCHO 0.822‡ 0.481‡ 0.697‡ 0.485‡ 1.000 0.585‡ -0.020 -0.166* 0.359‡ 0.315‡ 0.401‡ -0.112* -0.160* -0.099 0.141* -0.270‡ 

PHEN 0.551‡ 0.029 0.786‡ 0.545‡ 0.585‡ 1.000 -0.021 -0.458‡ 0.462‡ 0.008 0.569‡ -0.179† 0.066 -0.039 0.012 -0.137† 

CO 0.420‡ -0.367‡ 0.159* -0.035 -0.020* -0.021 1.000 -0.728‡ 0.820‡ 0.573‡ 0.263‡ -0.323‡ 0.520‡ 0.323‡ -0.602‡ 0.740‡ 

03 -0.396‡ 0.464‡ -0.590‡ -0.247‡ -0.166† -0.458‡ -0.728‡ 1.000 -0.926‡ -0.315‡ -0.483‡ 0.394‡ -0.507‡ -0.208† 0.525‡ -0.531‡ 

NOx 0.652‡ -0.359‡ 0.626‡ 0.296‡ 0.359‡ 0.462‡ 0.820‡ -0.926‡ 1.000 0.475‡ 0.545‡ -0.402‡ 0.468‡ 0.220‡ -0.516‡ 0.514‡ 

PM2.5 0.551‡ 0.204† 0.130* 0.007 0.315‡ 0.008 0.573‡ -0.315‡ 0.475‡ 1.000 0.460‡ -0.161† 0.202† 0.097 -0.210† 0.424‡ 

S02 0.502‡ -0.150* 0.511‡ 0.365‡ 0.401‡ 0.569‡ 0.263‡ -0.483‡ 0.545‡ 0.460‡ 1.000 -0.349‡ 0.321‡ -0.050 -0.161† 0.082 

M-INC -0.248‡ 0.205† -0.266‡ -0.192† -0.112* -0.179† -0.323‡ 0.394‡ -0.402‡ -0.161† -0.349‡ 1.000 -0.677‡ 0.219‡ 0.519‡ -0.203† 

%MIN  0.083 -0.435‡ 0.166* 0.029 -0.160* 0.066 0.520‡ -0.507‡ 0.468‡ 0.202† 0.321‡ -0.677‡ 1.000 -0.079 -0.524‡ 0.467‡ 

EDUC 0.031 -0.257‡ 0.026 -0.095 -0.099 -0.039 0.323‡ -0.208† 0.220‡ 0.097 -0.050 0.219‡ -0.079 1.000 -0.229‡ 0.376‡ 

OWN -0.102 0.449‡ -0.170* 0.016 0.141* 0.012 -0.602‡ 0.525‡ -0.516‡ -0.210† -0.161† 0.519‡ -0.524‡ -0.229‡ 1.000 -0.585‡ 

POP 0.051 -0.446‡ 0.012 -0.115† -0.270‡ -0.137† 0.740‡ -0.531‡ 0.514‡ 0.424‡ 0.082 -0.203† 0.467‡ 0.376‡ -0.585‡ 1.000 

Abbreviations (in order by table listing): CCHO = acetaldehyde; ACET = acetone; BENZ = benzene; BRC = ethylene dibromide; HCHO = formaldehyde; PHEN = phenols;  
O3 = ozone; PM2.5 = particulate matter < 2.5 microns in diameter; NOx = nitrogen oxides; SO2 = sulfur dioxide; CO = carbon monoxide; M-INC = median household income; 
%MIN = percent non-white; EDUC = percent with one or more years of college; OWN = percent of owner-occupied housing; POP = population density; CAP = criteria air 
pollutant; CMAQ = Community Multiscale Air Quality; CMAQ-HAP = CMAQ adapted for selected gas-phase HAPs; HAP = hazardous air pollutant; * = P-value < 0.05; † = P-
value < 0.001; ‡ = P-value < 0.0001  

 

Table 7: Pearson's correlation coefficient matrix. Shown here are selected CMAQ4.4- and CMAQ-HAP-simulated HAPs, CAPs and demographic variables
in Harris County, Texas. The averaging schema used is the 90-day mean of the 24-hour daily means for the 337 cells, the averaging schema used for this
pilot study. The strength of correlation between two variables is reflected in the size of the coefficient and in the P-value.

HAZARDOUS AIR 
POLLUTANT 

ABBR 
PCA  

Factor 1 
No Rotation 

PCA  
Factor 2 

No Rotation 

PCA  
Factor 1 
Varimax 

PCA  
Factor 2 
Varimax 

Acetaldehyde CCHO 0.787 0.155 0.710 0.372 
Acetone ACET 0.095 -0.582 0.257 -0.530 
Acrolein ACROL 0.887 -0.132 0.888 0.126 
Benzene BENZ 0.881 0.146 0.803 0.391 
1,3-Butadiene BUTA 0.831 -0.135 0.835 0.107 
Chloroform CHCL 0.343 -0.185 0.382 -0.080 
Cresols CRES 0.766 0.491 0.594 0.689 
Ethylene dibromide BRC 0.696 -0.225 0.732 -0.018 
Ethylene dichloride CLC 0.728 -0.235 0.765 -0.018 
Ethylene oxide ETOX 0.239 0.310 0.141 0.366 
Formaldehyde HCHO 0.810 -0.171 0.825 0.066 
Methylene chloride CLME 0.279 0.840 0.028 0.885 
Perchloroethylene CL4ET 0.093 0.776 -0.131 0.770 
Phenols PHEN 0.856 -0.115 0.853 0.133 
Trichloroethylene CL3ET 0.398 0.290 0.299 0.392 
Vinyl chloride CLET 0.756 -0.277 0.804 -0.050 

Abbreviations: ABBR = abbreviation; PCA = principal components analysis 

Table 8: Principal components analysis. Factors 1 and 2 were chosen for
the analyses, with varimax rotation, for the 90-day mean of the 24-hour daily
means for the 337 cells, the averaging schema used for this pilot study.
Species with one value > 0.40 and the other < 0.40 are particularly well
represented by the PCAfactor with the higher value in the statistical models.



rate), and the exposure of particular interest, i.e., the
pollutant variables.

Thus, for each of the three univariate LMM analyses
(cardiovascular, respiratory, and either) using the 90-day
mean averaging schema, we examined 32 potential
predictor (independent) variables. For subsequent building
of the multivariate models, two models for each of the three
outcome variables were built, one with the HAPs and the
other with the PCA factors. 

Multivariate Linear Mixed-Effects Model

We used a LMM to examine the relationship between age-
adjusted hospital admission rates by discharge diagnosis
(the dependent variable) and a total of 32 independent
variables, with the pollutant variables pre-adjusted by the
demographic variables as noted earlier. The unit of analysis
was the 337 4 x 4-km cells. In our preliminary analysis of
four averaging times and three months of data we
developed 24 multivariate models. In our final model using
a single averaging schema, the 90-day mean of the 24-hour
daily means, six multivariate final models were developed:
two for each of the three outcome variables: for each, one
that used the two PCA factors and one that used the 16
HAPs.

We used a backward elimination process, including in the
development of the final model all variables with a P-value
< 0.2 in the univariate analyses. We then excluded the
variables that were not significant predictors of the
dependent variable, one at a time. The type I error for
exclusion was set at 0.05. Various measures of goodness of
fit, including the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC), were regularly
employed as part of the model-building exercise. When
developing the multivariate model, we realized that many
of the air pollutant variables were highly correlated (see
Tables 6 and 7), and that the resultant effect estimates
would be unstable and therefore misleading with regard to
the contributions of individual pollutants to the outcome of
interest, i.e., hospital admission rates by discharge
diagnosis. The issue of multipollutant collinearity is
discussed in the next section, as well as in the Discussion.

Univariate and Multivariate LMM Results

As noted earlier, during the course of this pilot study our
explorations of the data and preliminary analyses
highlighted a number of concerns and questions, which
need to be addressed in subsequent work. These include in
particular concern about the accuracy of the CMAQ model

output and averaging paradigms used in this pilot study to
reasonably estimate population exposure differences across
the 337 cells; and potential distortion in admission rates
introduced by significant variations in population across
the 337 cells, for which we only partially adjusted in the
current model. These and other concerns and challenges are
examined in more detail in the Discussion section.
Particularly because of our concern regarding CMAQ
performance in this multipollutant model and a need to
further examine and possibly refine the exposure
component with additional techniques, we hesitate to
include the output of the univariate and multivariate LMMs
in this report. This concern is accentuated by the fact that
the collinearity in our multipollutant model makes the
effect estimates for the pollutants largely unusable for
typical interpretation of the role of specific variables. Our
specific concern is readers may inadvertently see the LMM
output as “results” rather than an iteration of a methodology
being explored. This is further complicated by the fact that
the purpose of this study was to define potential “hot spots”
of elevated exposure, delineation of which has political
consequences. Because the results do not yet meet the rigor
needed for such delineation, we feel that it is better not to
make this data publically available at this time. For these
reasons we are not including any of the three univariate or
six multivariate tables of the LMM results of the final
analysis, or any of the preliminary analyses, in this report
although the data and results may be made available for
researchers wishing to examine and build upon our
methods. 

Conditional Predicted “Hot-Spot” Rates

As noted above, our desire to include multiple pollutants
in the model that are likely important in assessing
differences in exposure in different areas of Harris County
resulted in a multivariate model with roughly seven to eight
pollutant and meteorological variables remaining in the
final model. These variables are in some instances highly
correlated, distorting the effect estimates. Although
considerable work is being done to develop better statistical
approaches for multipollutant models (Kim et al., 2007;
Stieb et al., 2008), our multipollutant effort resulted in
significant collinearity among the pollutants. Therefore the
effect of an individual independent variable in the final
model, controlling for the other variables in the model,
cannot be accurately deduced from the effect coefficients.
Nor can the relative strength of an independent variable be
necessarily inferred from the size of its coefficient, P-value,
or confidence intervals because of this collinearity, although
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the output does contain considerable information that
needs to be examined in more detail using data mining and
other tools. For these reasons we have chosen not to make
the LMM findings from this pilot study available at this
time. Collinearity, however, does not affect the ability of the
regression equations to predict the response. 

The underlying objective of this pilot study was to see if
a spatial analysis utilizing modeled pollutant
concentrations, including air toxics, demographic variables,
and hospital admission rates by 337 4 x 4-km cells could
predict potential “hot spots” of disproportionately elevated
health effects, which could subsequently be targeted for
more in-depth evaluation and, as appropriate, intervention.
Although the quality of the MM5, CMAQ4.4, and CMAQ-
HAP simulated output and averaging times for the variables
chosen at this time appear to be inadequate for reliable
comparisons of exposure among the 337 cells, the general

approach is very promising. 
The methodology used in this pilot study utilizes the

coefficients from the multivariate models to predict rates of
hospitalization, by gender, for cardiovascular, respiratory,
and cardiovascular or respiratory (either) disease. Figure 11
graphically depicts the crude age- and gender-adjusted rates
(Figure 11A) and conditional predicted rates (Figure 11B),
using the multivariate output for cardiovascular disease.
The crude hospitalization rates are the actual rates of
hospitalization by discharge diagnosis during the study
period, based on the geoaddressed THCIC data, corrected
for the age distribution in each cell. The predicted rates for
each outcome were calculated by summing the products,
for each statistically significant variable that remained in
the final multivariate LMM, of the log effect estimate times
the value for that variable, for each cell. Figure 11C is the
underlying equation for the output shown in Figure 11B.
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A. Cardiovascular disease (crude)

C. Equation for predicted rates of cardiovascular disease, controlling for the variables in the multivariate LMM (gender = 0 if female) for 
each of the 337 cells. The log rates were exponentiated for the map shown in B.

B. Predicted cardiovascular disease (adjusted)

log[age-adjusted cardiovascular admission rate]Predicted = -52.8020 + (-0.04667 × Gender) +  

(-0.0710 × %College) + (0.0300 × Median Income) + (-0.00539 × %Non-White) +  

(0.0065 × Housing Owner Rate) + (0.0318 × %Commute) + (0.0001 × Nighttime Population Density) + 

(0.9848 × Temperature) + (44.1927 × CO) + (0.4787 × O3) + (0.2065 × PM2.5) + (-33.9496 × CCHO) + 

(86.6513 × ACROL) + (3.5481 × HCHO) + (20.3236 × CLME) 

Crude Rate
Cardiovascular Disease
                0.00% - 0.25%
                0.26% - 0.75%
                0.76% - 1.50%
                1.51% - 1.63%

90-day means of 24-hr means

Predicted Rate
Cardiovascular Disease
                0.00% - 0.25%
                0.26% - 0.75%
                0.76% - 1.50%
                1.51% - 2.24%
                2.25% - 2.99%
                3.00% - 3.29%

90-day means of 24-hr means

Figure 11: Sample map of crude and predicted “hot spots” for rates of cardiovascular admissions. The predicted rates were calculated from the regression
coefficients from the final multivariate linear mixed-levels model for cardiovascular disease. Rates for males and females were proportionally combined, and
the predicted log(age-adjusted cardiovascular rate) exponentiated for mapping. A. Age-adjusted crude rate. B. Adjusted rate from multivariate LLM. C.
Equation for generation of the “hot spot” map shown in B. 



Although the models were stratified by gender, gender was
not a significant variable in any of the LMMs. Thus for the
predicted rates, the gender-specific log rates by outcome
were proportionally combined based on the gender
structure of each cell, and then the combined log rates were
exponentiated, resulting in the percentage of predicted
hospitalization by cardiovascular, respiratory, or
cardiovascular or respiratory (either) discharge diagnosis for
each of the 337 cells. Figure 11C is the underlying equation
for the output shown in Figure 11B. By using the
multivariate output, the rates are adjusted by the factors that
are significant predictors of hospitalization for each
outcome. Thus much of the “noise” that is reflected in the
crude age-adjusted rates is removed in the predicted rates
calculated from the final regression equations, resulting in a
more coherent “picture” of potential pollution-related “hot
spots” associated with elevated rates of hospitalization. The
distortion of effect estimates for individual correlated
variables is not a problem when the estimates are used
together to predict hospitalization rates across the cells.

Spatial Autocorrelation 

After developing the final multivariate LMMs, we
explored the conditional predicted residuals for any
remaining spatial autocorrelation not accounted for in the
regression models. For this exploration, we used ESRI's
Geostatistical Analyst to plot empirical semivariograms of
the conditional predicted residuals for each of the three
final models with the best fit. For each semivariogram cloud
of residuals, each of which represents a pair of locations, the
point where the plot flattens out indicates that the
relationships between the pairs of locations beyond this
distance are no longer correlated. The semivariograms (not
shown) of the conditional predicted residuals from each of
the final LMMs suggested little remaining autocorrelation.
This suggests that most of the important variables
differentiating the hospitalization rates between near or
adjacent cells were included in the model, leaving little
unaccounted spatial correlation between cells that could
bias the findings. More sophisticated data mining
techniques for potential autocorrelation of variables with
varying spatial resolution and confidence in a grid-based
health effects model are, however, needed. Such techniques
may delineate important spatial patterns for additional
exploration (Waller and Gotway, 2004).

DISCUSSION

As discussed in the previous section, concerns about the
emission inventories, the accuracy of the CMAQ
simulations for estimating human exposure, the
appropriateness of the averaging time used, and population-
based variations in statistical uncertainty-among other
issues yet poorly articulated--led us to refrain from
presenting the output from the multivariate linear mixed-
effects regression models in this report for fear that so doing
might be misconstrued. Nevertheless, we feel that using
CMAQ-possibly in combination with other air quality
models and/or observed values-with actual health
endpoints to help to predict potential geospatial “hot spots”
of concern shows considerable promise, and that the
underlying methodology developed in this pilot study
provides a template for testing and refining various
components of this initial effort. In addition, although there
are justifiable concerns about, in particular, the estimate of
exposure, our study was successful methodologically in
demonstrating a general procedure that is not dependent on
the known shortcomings of fixed-site monitors to create
predictive spatial maps of multipollutant exposure and
associated health effects that can identify particular areas of
concern for additional investigation. Preliminary output
from the multivariate models was also encouraging in that
the variables that remained in the cardiovascular and
respiratory spatial models were surprisingly consistent
using different averaging times and with and without PCA.
In addition, the pollution and demographic variables that
remained in the models were generally consistent with
other studies of cardiorespiratory endpoints and ambient
air pollution, and the spatial delineation of “hot spots” in
Harris County based on conditional predicted
hospitalization rates calculated from the full multivariate
pollutant-based models suggested several areas that have
already been defined as areas of concern by the TCEQ's
APWL (Texas Commission on Environmental Quality,
2008) and NATA. Thus we believe that the methodology in
general shows promise.

In this pilot study we sought to test, evaluate, and
improve the methodology for conducting multipollutant
“hot spot” analyses, using simulated pollutant
concentrations and actual health effects. More precisely, we
explored the usefulness of a Eulerian photochemical
transport model to estimate exposure at the 4-km level, the
estimated exposure then utilized in a health-based
multivariate model that attempted to identify areas of
disproportionate exposure and adverse health effects in
Harris County, Texas. The pollutant simulation model we
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used was the U.S. EPA's CMAQ model, with improved
emissions input for Texas and several modifications of the
model itself to explicitly represent 16 HAPs of particular
concern in the Houston area. Also included were simulated
vales for five criteria pollutants and two meteorological
variables as potential predictors of effect, measured in this
study by hospitalization for cardiovascular or respiratory
disease during a 98-day period in 2000. The study
attempted to differentiate levels of chronic multipollutant
exposure and adverse health effects across the 337 4 x 4-km
cells that overlay the county, controlling for a number of
other variables that can affect the likelihood of
hospitalization, such as income, ethnicity, age, education,
and several other individual- and group-level demographic
factors. It is fundamentally a spatial “hot spot” study with
the 90-day exposure window representing chronic
exposure, although within-cell exposure variability is an
important variable that needs to be addressed in subsequent
work. The underlying question of this pilot effort, then, is
whether living in a 4 x 4-km cell with consistently higher
concentrations of multiple pollutants increases the overall
likelihood of residents in that cell experiencing adverse
health events, such as heart attack, stroke, arrhythmias,
asthma attacks, and pneumonia, that would likely result in
hospitalization.

The pilot study is noteworthy for several things it
attempted: (1) use of a one-atmosphere photochemical
model to provide geographical coverage for all of Harris
County, as well as to include multiple pollutant species
(e.g., CAPs and HAPs, including secondarily formed
photochemical components of these pollutants) in the same
model; (2) development of a computationally efficient
software program for generating a subset of HAPs for future
larger studies; (3) utilization of a grid-based spatial model
that lends itself to subsequent refinement; (4) a focus on
defining “hot spots” rather than capturing the role of
specific pollutants in the disease endpoints studied; and (5)
use of actual health data to define risk in a “hot spot”
model.

The pilot study is also noteworthy for the number of
challenges it encountered, many of which are beyond the
scope and resources of this initial effort and will need to be
addressed in future work. As noted throughout this report,
these include concerns about the emission inventories, the
ability of the CMAQ simulations to reproduce measured
concentrations and provide reasonably accurate
approximation of exposure to multiple pollutants at various
spatial resolutions, the appropriateness of the averaging
time used, population-based variations in statistical
uncertainty, and other issues yet poorly articulated. This

discussion focuses on some of our more general findings
and challenges encountered.

MULTIPOLLUTANT RESEARCH

As demonstrated by a recent special issue of the Journal
of Exposure Science & Environmental Epidemiology
dedicated to the “Interpretation of Epidemiologic Studies of
Multipollutant Ambient Air Exposure and Health Effects,”
the appreciation of the need to address multipollutant
exposure and its attendant challenges is increasingly a
major topic (Ito et al., 2007; Kim et al., 2007). Key issues that
limit multipollutant models include covariation of
pollutants, potential confounding by mismeasured or
unmeasured pollutants, complex health-associated
interactions, the rationale for selection of pollutants or
pollutant groups, and extensive exposure uncertainty. 

In this pilot study, we included a large number of
meteorological and pollutant variables. Although we are not
including the regression output in this report, in part
because of the distortion in effect estimates created by such
a multipollutant model, it is useful to note that
approximately five to seven air quality variables remained
in most of our multivariate LMM models, with temperature,
CO, O3, PM2.5, and formaldehyde represented in most.
There were small differences based on whether
cardiovascular or respiratory disease was the outcome
measure, as well as with different inventories (regular or
imputed TEI) and averaging times. For example, in the
earlier 92-day analysis using the regular TEI that explored
multiple averaging times, among the CAPs, CO, O3, NO2,
and PM2.5 tended to remain in the models that used the
mean of the 24-hour daily means, but only CO and O3
remained in models using the maximum daily moving six-
hour mean. Although this may be the result of simulation
error, it may also reflect the fact that CO and especially O3
tend to be higher during the day, whereas NO2/NOx and PM
tend to be somewhat higher at night. The maximum six-
hour moving average tends to attenuate these daily
temporal differences that, combined with different
day/night activity patterns, may be reflected in the final
health models. In the more recent 90-day model that used
the imputed TEI, NOx did not remain in the models and
may relate to reduced NOx levels associated with the
addition of HRVOCs and thus higher O3 generation (Kim et
al., 2006). In addition to the complexity of multipollutant
exposure itself, the abilities of “one-atmosphere” air quality
models such as CMAQ and statistical analysis tools to
adequately respond to shifting input and interactions
continues to be a major impediment to such research.
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We chose to effectively ignore the collinearity problem by
focusing on predicting “hot spots” from the multivariate
equations. This, we feel, has considerable validity for
delineation of areas of elevated stress, despite the fact that
interpretation of much of the model output itself is
complicated by the correlation between pollutants in the
final LMM. Nevertheless, multiple pollutant exposure is
critical in realistically defining “hot spots,” as well as in
better understanding resulting health effects. There have
been a number of multipollutant studies. for example, that
have found CO, PM2.5, O3, and often NOx/NO2 to predict
hospitalization or other adverse health outcomes (Ballester
et al., 2001; Barnett et al., 2006; Burnett et al., 1997; Burnett
et al., 1997; Burnett et al., 1999; Fusco et al., 2001; Hinwood
et al., 2006; Koken et al., 2003; Lanki et al., 2006; Lin et al.,
2003; Linn et al., 2000; Morris et al., 1995; Schwartz, 1999;
Sheppard et al., 1999; Yang et al., 2007; Yang et al., 1998).
Of particular import for this discussion and the challenges
of this pilot effort is that these multiple pollutant models
have stimulated considerable discussion about
interpretation, including the possibility that some
previously published work included effect estimates that
may be distorted due to correlation among the pollutants.
Other issues that are being addressed include the likelihood
that a number of pollutants may actually be surrogates for
other pollutants in these models, that key pollutants may
not be included in some models at all, emerging methods
for better handling collinearity with more advanced
statistical techniques, and improvements in speciation
monitoring and receptor modeling to expand our
knowledge of pollutant characteristics (Bateson et al., 2007;
Brown et al., 2007; Kim et al., 2007; Sarnat et al., 2007;
Tolbert et al., 2007). 

Several multipollutant studies of particular relevance are
summarized here, focusing particularly on cardiovascular
and respiratory effects, as these were the outcomes studied
in our pilot. 

Linn and associates, for example, studied the associations
between ambient CO, NO2, PM2.5, and O3 and
cardiopulmonary hospital admissions during 1991-1995 in
metropolitan Los Angeles. Carbon monoxide showed the
most consistently significant relationships with
hospitalizations, with an increase of approximately 1.1 ppm
associated with a 4% increase in hospitalizations (Linn et
al., 2000). Burnett and associates found a stronger
relationship between CO and hospitalization for congestive
heart failure (CHF) than between NO2, O3, SO2, or haze and
CHF in the elderly in a study of 134 hospitals in Canada's
largest cities (Burnett et al., 1997). In a large study of 8,582
cerebrovascular admissions and air pollution in Taipei,

Taiwan, Chan and associates found that CO and O3 were
more consistently associated with cerebrovascular
admissions than were the other pollutants studied,
including NO2, SO2, PM2.5, and PM10 (Chan et al., 2006). In
their study, the effects were most pronounced with a 0-day
lag for O3, a 2-day lag for CO, and a 3-day lag for PM.

Of increasing interest in many of the PM studies is
particle mass, particle number, speciation, and the degree to
which certain pollutants may be effective surrogates for
other pollutants (Ito et al., 2007; Kim et al., 2007). A recent
study by Janhall and Hallquist, for example, found that NO
correlates strongly with ultrafine particles (UFPs) along
roadsides, whereas NO2 correlates strongly with
background levels of UFP (Janhall and Hallquist, 2005).
There is increasing interest in the role of UFPs, especially in
cardiovascular disease. 

The role of O3 in manifestations of cardiovascular and
respiratory disease in multipollutant studies is somewhat
conflicting. Ozone has been associated with hospital
admissions in a number of studies, although there seems to
be considerable intercity differences (Medina-Ramon et al.,
2006), with some suggestion that elevations in O3 may have
a greater effect on vulnerable populations in areas with
generally lower background O3 concentrations (Medina-
Ramon and Schwartz, 2008). In a multipollutant study in
Atlanta, GA, that used emergency department visits as its
health endpoint, researchers at Emory University observed,
for cardiovascular visits, associations with CO, NO2, and
PM2.5 elemental carbon and organic carbon, with CO as the
strongest predictor (Tolbert et al., 2007). For respiratory
visits, associations were observed with O3, PM10, CO, and
NO2 in single-pollutant models, whereas in multipollutant
models, PM10 and O3 persisted as predictors, with O3 the
stronger predictor. The authors stress the difficulty of
interpreting multipollutant models, noting that they can be
as biased and as misleading as single-pollutant models.

CMAQ AS AN ESTIMATE OF EXPOSURE

CMAQ is intended as a multipollutant model, but do the
simulated concentrations estimate exposure sufficiently
well at this point for researchers and/or policy makers to
have reasonable confidence in associations with health
effects observed? 

A rigorous analysis of the sensitivity of MM5, CMAQ4.4
(with the SAPRC99-ARO mechanism), and CMAQ-HAP to
adequately simulate observed values measured at monitors
(one of the more common comparisons for modeled output)
is beyond the scope of this report. However, such analyses
are being done elsewhere (Appel et al., 2007; Byun et al.,
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2007; Ching et al., 2006; Gego et al., 2006; Hakami et al.,
2007; Irwin et al., 2008; Jimenez-Guerrero et al., 2008;
Marshall et al., 2008; Napelenok et al., 2008; Seigneur, 2005;
Sokhi et al., 2006). The CMAQ model, the elements of
which are continually being updated (see www.cmaq-
model.org for the recent new updates, including CMAQ4.6),
is one of three air quality models that can be used to model
O3 and PM for SIP development (U.S. Environmental
Protection Agency, 2008). EPA's guidance document for the
use of models, Guidance on the Use of Models and Other
Analyses for Demonstrating Attainment of Air Quality
Goals for Ozone, PM2.5, and Regional Haze, offers a number
of approaches for assessing model accuracy, such as
comparisons between modeled and observed ratios of
indicator species, the decoupled direct method (DDM) for
assessing a model's sensitivity to input perturbations,
integrated process rate (IPR) analyses to assess the relative
contributions of model components to output, and
sensitivity tests of alternative model input in predicting
known concentrations (U.S. Environmental Protection
Agency, 2008). 

A number of investigators have assessed the sensitivity of
CMAQ using different methods. Byun and associates
recently evaluated the sensitivity of CAMx and CMAQ,
using similar model configurations, to simulate a high-
ozone episode in Houston in August 2000 (Byun et al.,
2007). They found that the two models performed similarly
using the base emission inventory but that, with the
addition of the imputed HRVOC emissions-which we use in
our final model, CMAQ predicted lower ozone peaks in
HRVOC-rich areas than did CAMx, suggesting that the
CMAQ system may be radical poor relative to ozone
formation. Hakami and associates used DDM and adjoint
methods of CMAQ to collect sensitivity information about
specific receptors, which can be used to improve model
performance but is also a powerful tool for identifying
emission sources that are associated with “hot spots”
(Hakami et al., 2007). Napelenok and associates, including
researchers at Rice University, are using a three-
dimensional DDM approach to assess the sensitivity of
CMAQ during a summer ozone episode at different scales
across the U.S., finding good correlation for both primary
and secondary pollutants (Napelenok et al., 2008). 

Although the researchers noted above primarily focused
on ozone, a number have addressed PM2.5 and NOx as well
in comprehensive performance evaluations that generally
also evaluated the performance measure, such as those
performed on the CMAQ simulations from the Southern
Oxidant Study (Zhang et al., 2006; Zhang et al., 2006; Zhang
et al., 2006). Wyat Appel and co-workers have recently

focused on CMAQ version 4.5's performance in predicting
PM2.5 (Wyat Appel et al., 2008), a pollutant of considerable
concern in our study because of the numerous studies
linking it to cardiovascular disease. 

Luecken, Hutzell, and Gibson have reported on the
predictive capability of CMAQ, compared with observed
concentrations, for five HAPs (formaldehyde, acetaldehyde,
benzene, 1,3-butadiene, and acrolein) and found generally
good agreement, with a tendency for underpredicting
(Luecken et al., 2006). Ching and co-workers used a version
of CMAQ4.4 with a modified CB4 mechanism to study the
usefulness of simulated HAP concentrations in the
Philadelphia area. They found that “modeled mean values
compared reasonably well against the observed
concentrations” (Ching et al., 2004). These and other studies
are useful not only in broadly assessing the possible utility
of a study such as ours, but also with helping us to interpret
our output in the context of known CMAQ strengths and
weaknesses. 

As part of our study we compared simulated
concentrations with observed concentrations at Harris
County monitors, examining hourly pairs, the averaging
schema used in this pilot study (90-day mean of the 24-hour
daily means), outliers, and temporal agreement (Figure 5).
In general, the time series and scatter plots of hourly pairs
performed better than the scatter plots of the pairs reflecting
the averaging period used, i.e., the 90-day mean of the 24-
hour daily means, but there were differences among
pollutants. For the averaging period utilized, the R2 values
ranged from > 0.8 for temperature to 0.03 and 0.04 for
PM2.5. For O3, the R2 at the four monitors plotted ranged
between 0.46 and 0.53. For all 337 cells, the simulated-to-
observed ratio of was 0.997 for temperature, 1.385 for O3,
0.433 for CO, 0.680 for NOx, 0.750 for PM2.5 and 0.252 for
formaldehyde. The overprediction by CMAQ of O3
concentrations is largely due to a nighttime bias, which is
why the apparent performance greatly improves if
maximum 6- or 8-hour moving averages are used. 

The above comparisons with observed data may be
somewhat misleading in that in several instances the
monitor data were either extremely sparse or acknowledged
to be of poor quality. The CO and PM2.5 monitors, in
particular, performed poorly during our study period, with
the CO monitors having a problem with variable baseline
shift. The PM2.5 monitoring had just begun and was still
being tested. Current PM2.5 monitor coverage is better and
the correlations have improved considerably. Current UH-
IMAQS hourly 24-hour R2 values for PM2.5 at Channelview
and Deer Park (the only two monitors measuring PM2.5
during our study period) in April 2008 were approximately
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0.3 and 0.5 (an improvement by a factor of 10), respectively,
with the R2 values for the “best-fit” comparison, i.e., the
closest CMAQ:CAMS comparison within 9 adjacent 4 x 4-
km cells, considerably higher. 

For our pilot study the accuracy of the spatial ranking of
concentrations across the 337 cells is of most interest, and
in general there are too few monitors measuring the
pollutants of interest, and the poor geographical
distribution of the monitors (largely in East Harris County)
complicates any spatial appraisal. Even the large but
consistent overprediction of mean O3 concentrations would
not necessarily be a major impediment if the monitored and
observed values were in the same rank order, from high to
low. However, as noted in Figure 7, this is not generally the
case using our averaging schema. Using a maximum 6- or 8-
hour moving average would greatly improve the simulated-
to-observed ratio but would it improve the estimate of
exposure? Does having multiple pollutants in the
conditional predicted rates generated by the multivariate
LMM improve the exposure metric and delineation of “hot
spots” by allowing collinearity? Or degrade it? How does
one best assess spatial performance with little or no
observed data? As discussed earlier, simulations even at 4-
km resolution will not represent peaks that may represent a
subgrid feature. We cannot address this aspect of variability
in this pilot study but recognize that future studies are
needed to examine the contributions of these peaks and
associated subgrid variability to explaining adverse health
events.

AVERAGING SCHEMA

The choice of an averaging period (or different averaging
periods for each pollutant) is a key component in the study
design. Inappropriate averaging can diminish or even
eliminate important exposure characteristics, and temporal
misalignment can lead to measurement error of a different
kind (Bateson et al., 2007). The foremost consideration is an
appropriate averaging schema for the health endpoint being
studied. At the same time, however, especially when using
simulated meteorological and pollutant data, one wants an
averaging time that optimizes the accuracy of the exposure
estimation. In the case in which the health outcome seems
best served by a measure of chronic exposure, such as the
mean of the 24-hour daily means, and the accuracy of the
simulated exposure optimized by using shorter averaging
times, several hybrid approaches may be useful. For
example, the use of the longer-term average such as we used
(90 day mean of the 24-hour daily means) to characterize
baseline exposure might be weighted or augmented by a

shorter averaging period, such as the maximum daily
concentration. 

Another approach for ambient exposure would be to
ignore penetrance ratios but to limit the portion of the day
averaged, such as from 9 am through 9 pm. This would
better reflect times when people are likely to be outdoors, as
well as reduce one common deficiency of CMAQ and other
photochemical models, that is, night-time bias. This
however underestimates exposure to PM, which has a high
penetrance ratio. A concern, in general, with variable
windows of exposure is that we may not adequately
understand the pollutant characteristics or the biological
mechanisms. For example, recent studies suggest that
indoor exposure to O3 is higher than previously recognized,
and that formaldehyde and other oxidation products that
are quickly formed indoors or within vehicles by O3 may
contribute to adverse health effects that should be attributed
to O3 (Weschler, 2006).

The choice of an averaging schema is also related to
within-cell variability, which is addressed briefly in the
section on temporal variability, and more comprehensively
in the section on subgrid variability in Future Efforts.
Additional work is needed to explore of short-term
excursions in cells with high or low chronic exposure. This
may be especially important in the HGA as, in addition to
baseline geographic differences in exposure, some areas are
regularly exposed to short-term but significant elevations in
pollutant concentrations as noted earlier (Webster et al.,
2007).

A better understanding of the appropriate averaging time-
which is complexly linked with available exposure
measurements and/or simulations, activity patterns, daily
concentration variability, and biological response to
exposure-is needed. As CMAQ's ability to simulate more
pollutants improves, some of the pressure to choose a high
performance averaging schema, despite the outcome being
studied, will lessen. Similarly, a hybrid overlay with
Gaussian or Lagrangian simulations may improve the
exposure metric and therefore allow more appropriate
averaging schema and exposure modulation, without
undermining the model's findings with an averaging
schema poorly matched to the exposure estimation ability
of the model. 

COLLINEARITY AND EFFECT ESTIMATES

Collinearity is the statistical difficulty of separating the
independent effects of correlated variables in
multipollutant models as more than one variable may
explain the same variability in the outcome measure
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(Bateson et al., 2007; Ito et al., 2007). Standard regression
models routinely have difficulty assigning the “correct”
variability to each variable, often resulting in highly
unstable effect estimates. In this situation, the effect of an
individual independent variable in the final model,
controlling for the other variables in the model, cannot be
calculated from its effect coefficient, nor can the relative
strength of the variable be necessarily inferred from the size
of its coefficient, P-value, or confidence intervals.
Collinearity, however, does not affect the ability of the
regression equation to predict the response, as reflected in
our study's “hot spot” maps. It is only a problem if the intent
is to estimate the contributions of individual predictors,
which is usually the case. To reduce collinearity in multiple
regression models, several techniques, including
hierarchical regression methods, PCA for the entire set of
pollutant variables, and elements of Bayesian model
averaging can be useful in reducing collinearity in some
models.

OTHER CHALLENGES

The grid-based structure effectively introduced a new
variable in that the population density, and therefore the
confidence in the hospitalization rates, varied significantly
across the 337 cells in Harris County. In the Methods
section we describe an approach that reduces the effect of
low-population cells on the analysis. Future efforts are
needed to qualify all of the cells based on the confidence in
each cell's data, without undermining the model's power to
predict “hot spots” in rural or other low population areas. 

As noted in the statistical section of the Methods, we
evaluated the usefulness of PCA as a means of extracting
subsets of linear combinations that account for most of the
variability and then using these as surrogate predictors of
the 16 HAPs. The first two factors, with varimax rotation,
were chosen for inclusion in the multivariate LMMs as
together they represented approximately 60% of the
variability. For each of the three diagnostic outcomes, we
ran the regression with the PCA factors and without, i.e.,
with the original 16 air toxics. The AIC was improved in
each instance in the model that used all 16 air toxics.
Although multi-collinearity among the HAPs was
eliminated by using the PCA factors, the regression
coefficients in the full model were still unstable due to
correlation among the CAPs and, because of difficulty in
interpretation of PCA factors, the PCA factors were not used
in the final predictive maps. Additional work in this area,
however, is warranted.

Although in this pilot study we examined

hospitalizations categorized by discharge diagnosis of
cardiovascular, respiratory, and cardiovascular or
respiratory (either), we might consider focusing on
cardiovascular in future efforts. The primary reason would
be that the underlying biological mechanisms of pollution-
induced cardiovascular and respiratory disease tends to
have two relatively distinct components, chronic and acute,
with vulnerability to acute effects highly dependent on
underlying disease. For a chronic exposure study
examining different areas of Harris County or elsewhere, the
primary question is whether living in an area with higher
levels of pollution make one more vulnerable to acute
episodes. Pollution-induced respiratory effects tend to be
more acute and often reversible. Exacerbation of asthma is a
typical example. In our hospital admission database, 36.1%
of all admissions (N = 35,436) were for cardiovascular
disease; 17.5% were for respiratory disease. Cardiovascular
disease also inflicts greater morbidity and mortality on the
population, and therefore may be of greater public health
concern. Carbon monoxide, PM2.5, and O3 have all been
implicated in chronic and acute effects in cardiovascular
disease. Among the CO- and PM-induced effects are
reduced oxygen-carrying capacity, inflammation, arterial
endothelial damage, effects on atherosclerotic plaque
stability, altered endothelial function, effects on autonomic
function, and increased reactive oxygen species (European
Commission Directorate-General XI, 1999). In addition,
several investigators have suggested that CO may be a
marker or surrogate for traffic-related pollution, as well as
for UFPs and/or particulate number concentration (PNC)
(Lanki et al., 2006), both which appear to play a strong role
in cardiovascular disease and secondary events. In
addition, O3 has been linked with arrhythmias, decreased
oxygen-carrying capacity secondary to inflammation and
increased reactive oxygen species, although O3 has more
typically been associated with shorter-term respiratory
effects. 

Using a pollutant-associated outcome that is affected by
both chronic multipollutant exposure and short-term
excursions and using the more focused biological
mechanisms to help determine variables and averaging time
may result in a in a model that is better able to discriminate
effect and resolve spatially with more accuracy.  
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LIMITATIONS

Concerns about the ability of the CMAQ model to
adequately simulate the pollutant concentrations
temporally and spatially for the purposes of this pilot health
effects study continue to be the most significant concern,
ultimately making any conclusions from the health-based
model premature or qualitative. Questions about the best
averaging schema, and poor geographical coverage and
some measurement problems at the monitors increase the
difficulty of adequately assessing the model. In addition,
there are known problems with the emissions inventories,
and poor spatial resolution for area sources is a particular
concern for “hot spot” analyses. Other concerns and
limitations not discussed earlier include misclassification
errors in the hospital admissions databases, probably
largely nondifferential but also including some differential
interhospital error (for example, public inner-city hospitals
may be less likely to send in complete records); and
questionable generalizations from domain data (ecologic
bias). We are aware that some bias was introduced in
geocoding, i.e., in general the disenfranchised who are also
more likely to be affected by elevated exposure to air
pollution are also most likely to not get health care, to not
have their healthcare records sent to the state, and to have
an address (or not have an address) that doesn't exist,
doesn't geocode because of mistakes, or doesn't represent
where this person lives. However, loss of high-risk
individuals would more likely reduce any significant
findings rather than bias the study toward spurious
unsupported findings. Other potential problems include
differential error of migration (for example, at-risk
populations may move from a high exposure area in order
to live in a lower exposure area and to be close to medical
facilities, or sick individuals may move to a poorer and
higher exposure area because of the expense of their
illness), lack of information on smoking and other lifestyle
choices, and lack of information on indoor exposure or
activity (e.g., time spent driving which, especially for air
toxics, has been shown to be the source of highest exposure
to air toxics for many individuals). 

IMPLICATIONS

Our pilot project utilized the EPA's Eulerian CMAQ4.4
and CMAQ-HAP models (Byun and Schere, 2006; Byun and
Ching, 1999; Byun et al., 2003), the first of which was
adapted for this study by modifying the chemical
mechanism, SAPRC99, to explicitly simulate a numbers of
HAPs. CMAQ-HAP was especially developed for this

project to work in concert with the adapted CMAQ4.4
output to significantly reduce computational resources
needed. This may aid in using CMAQ for future health
studies, as health effects studies typically need sufficient
time or geography to supply an adequate number of cases to
have sufficient statistical power to detect a difference. 

In addition, the framework and georeferenced pollutant,
patient, and Census 2000 databases that we have developed
lend themselves to other analyses, as well as continuing
analysis of these or additional compatible datasets. As the
exposure metric is improved, the grid-based GIS model is
amenable to future incorporation of additional layers of
spatial attribute data. This approach also has the advantage
of building increasing complexity into the model in an
iterative fashion, nesting additional information into
previously completed work or, as appropriate, aggregating
outward (e.g., patient addresses) at different resolutions
and/or geographical shapes. This includes the possibility of
adding subgrid information or building hybrid models, both
of which are discussed in the next section. Yanosky and
associates have recently taken a similar approach in
building a layered high resolution PM map from disparate
geospatial and temporal sources for subsequent use with
health data from the Nurses' Health Study cohort (Yanosky
et al., 2008). 

Despite significant and continuing problems and
uncertainties, we feel that the use of a multipollutant model
to generate equations for calculating conditional predictive
rates by 4 x 4-km or other unit of geographical analysis is a
potentially promising approach for delineation of “hot
spots,” which are poorly captured by monitoring networks
and most study designs. These areas could then be targeted
for additional exploration using fixed and/or mobile monitors,
aerial photography, “differential light absorption and ranging
(DIAL) leak-finding cameras, speciation, receptor modeling,
community questionnaires, or other methods. These targeted
studies could lead to improved monitoring and emissions
data, as well as novel approaches to potentially reduce model
biases in the “hot-spot” areas, leading to improved
multipollutant model predictions, and the subsequent
increase in the confidence of the statistical outcomes.

FUTURE EFFORTS

Numerous refinements of our methods and data input are
needed, including additional exploration of the existing
data with more rigorous and focused techniques, as well as
improved methods to better estimate exposure and deal
with uncertainty in a multipollutant health-effects model.
Future efforts might include the following. 
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DATA MINING

Other future efforts that could indirectly support the
efforts to refine the estimate of exposure might include
more extensive analysis of the existing spatial datasets
using advanced data mining techniques, and more rigorous
examination of different averaging schema that may be
important. For example, additional information on daily
temporal variations in simulated pollutants along with
penetrance and exposure factors might suggest that certain
averaging periods and/or times of the day are particularly
important. This could potentially be determined at the
individual pollutant level. Care would need to be taken to
not inadvertently introduce new variables or misrepresent
hazards captured by simpler averaging. For example, recent
evidence suggests that health effects associated with O3
may be misrepresented by only considering outdoor
maximum moving eight-hour outdoor averages due to
secondarily formed oxidation products indoors that may
attenuate O3-associated health effects (Weschler, 2006).
Data mining can be used to help explore potential
approaches and identify underlying patterns that may be
important. 

IMPROVED LOCAL-SCALE EXPOSURE ESTIMATION

Emission Inventories

Although improvement of the emission inventories is
generally beyond our capabilities, the inventories are being
continually refined and the TCEQ has invested significant
resources into improving the emission information
available for the HGA and into modeling the region
accurately. Industrial sources are improving their emissions
estimates, and state and federal governments are
increasingly requiring more chemicals, metals, and
particulates to be reported. In addition, increased stack and
fence-line monitoring and use of new technologies such as
DIAL and aircraft capable of high-resolution samplings are
regularly identifying emissions or concentration levels that
are being subsequently used to refine the inventories. More
realistic vehicle emission factors are also improving model
input. On a more local scale, area sources such as gasoline
stations and restaurants could be geoaddressed for better
resolution. These improvements in emissions input and
understanding will improve CMAQ and the exposure
metric, especially for spatial “hot spot” analyses.

Subgrid Variability

At 4-km resolution, the modeled pollutant signal is
known to have filtered high pollutant concentrations levels
arising from local sources, sources that are important for
“hot spot” delineation. Exposures to these localized high
pollutant levels would not be discriminated using the grid
mesh for this study. As can be seen in Figure 2, which maps
the standard deviations of the simulated hourly
concentrations, there is considerable variability within and
between cells that is not captured in our current model.
Finer resolution modeling, which entails considerable
computer resources, improved emissions data, and/or
alternative approaches, is required to gain additional
precision and confidence in further assessing the rigor of
the hypothesis. Subgrid variability (SGV) pollutant
distribution functions could be used to better characterize
intracell variability in a stochastic framework, and methods
for such SGV functions are currently under development by
Ching and colleagues (Ching et al., 2005; Ching et al., 2006;
Isakov et al., In press). Such additional data on spatial
texture may indeed be needed if health triggers are
exacerbated by populations exposed and compromised by
elevated pollutant levels currently filtered by the coarseness
of operational grid model outputs.

Hybrid Modeling

A hybrid model could also be used to increase local-scale
resolution. In this approach, the CMAQ output would likely
serve as the base model, which would then be overlaid with
additional georeferenced information such as from
measured concentrations at fixed-site monitors, dispersion
models such as AERMOD that might, for example, use a
link-node roadway overlay to boost concentration levels
near roadways, and/or a Lagrangian model such as
HYSPLIT to better account for variability in emission
sources (Ching et al., 2006; Stein et al., 2007). This allows
for a weighted ensemble model that benefits from several
approaches to improve the exposure metric. 

Exposure Factors

The use of SGV distribution functions are especially
attractive in this hypothesis testing mode since it is
population exposure in a grid cell that is being assessed,
and it is unlikely that any person's exposure is constant but
rather is variable, i.e., many degrees of freedom, depending
on individual and/or group patterns of activities and time in
microenvironments that might occur within any specific
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model grid. Additionally, explicit activity and indoor-
outdoor penetration factors have not been factored into the
current study. Future efforts should take these exposure
variables into consideration. Personal monitoring data and
penetration factors are available from several local studies,
including the Relationships of Indoor, Outdoor, and
Personal Air (RIOPA) study (Weisel et al., 2005) and the
Houston Exposure to Air Toxics Study (HEATS) (Morandi
and Stock, 2008). Between the two studies, approximately
300 Houston-area residents participated in personal
monitoring, with microenvironment and monitor
measurements also obtained. Recent Harris County-specific
survey data from the U.S. Center for Disease Control and
Prevention's (CDC) Behavioral Risk Factor Surveillance
System (BRFSS) (U.S. Centers for Disease Control and
Prevention, 2008) may also be helpful. Utilization of such
information for refining the exposure metric would likely
involve utilizing existing exposure software such as
HAPEM or SHEDS (Georgopoulos et al., 2005). This could
be achieved fairly efficiently given that the pollutant,
demographic, and hospital admissions data already exist.   

NESTED EXPLORATIONS

The CMAQ nested grid-based model allows for increasing
resolution in areas of particular interest and encourages
models that continue to refine previous efforts. Local-scale
HAP modeling using adaptations of the chemical
mechanisms associated with CMAQ has been done for
several urban areas, including portions of Houston (Ching et
al., 2004) and Philadelphia (Ching et al., 2004; Isakov et al.,
2007). The identification of areas of interest can also
provide rationale not only for higher resolution local-scale
modeling but also for the temporary or long-term placement
of monitors in areas of concern.

Another potentially useful effort, building on the work
completed to date, might use a time-series design to
examine day-to-day variations in hospital admissions in
several blocks of contiguous cells (possibly two 12-km
blocks of 4 x 4-km cells) with significantly different levels
of exposure, as determined by the 90-day mean of the 24-
hour means. Such a study would help tease apart the effects
of chronic and short-term elevations on health outcomes,
and could focus on areas with sufficient population to
reduce some of the grid-based error associated with the
associated uncertainty in small-population cells.

CONCLUSIONS

Although ours is a pilot study, the geospatial methods
and databases we have developed to bring together
simulations from MM5 and CMAQ, hospital admission
data, and demographic variables will be useful for future
refinements of our “hot spot” approach, as well as to better
characterize Harris County in general. With improved
exposure input, we anticipate that the model will be useful
in delineating potential “hot spots” of disproportionate
exposure and vulnerability to adverse health effects in
Harris County, areas that can then be targeted for additional
research and/or intervention.
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OTHER PUBLICATIONS RESULTING FROM THIS
RESEARCH

No publications in peer-reviewed journals have yet
resulted from this research. One abstract and two oral
presentations have resulted from the pilot work.
Hamilton WJ, Byun D, Lopez RA, Coarfa VF, Han Y, Chan
W, Ching JKS: Geospatial Analysis of Air Toxics and
Hospital Admissions in Harris County, Texas. 17th Annual
Conference of the International Society of Exposure
Analysis (ISEA), Durham/Research Triangle Park, NC,
October 14-18, 2007.
Hamilton WJ, Byun D, Chan W, Ching JKS, Han Y, Lopez
RA, Coarfa VF, Lee DG: Preliminary Explorations into Using
EPA's CMAQ Model and Hospital Admission Data to
Identify Multipollutant “Hot Spots” of Concern in Harris
County, Texas. U.S. Environmental Protection Agency
Atmospheric Modeling Division, National Exposure
Research Laboratory and Office of Research and
Development (USEPA AMD/NERL/ORD) Seminar.
Research Triangle Park, NC, October 17, 2008.

ABBREVIATIONS

AERMOD American Meteorological Society/
Environmental Protection Agency 
Regulatory 
Model Improvement Committee Model

AIC Akaike Information Criterion
AIRS U.S. EPA's Aerometric Information Retrieval
Service
APEX Air Pollutant Exposure Model 
APWL Air Pollution Watch List
ASPEN Assessment System for Population Exposure

Nationwide
ATSDR Agency for Toxic Substances and Disease
Registry
BCM Baylor College of Medicine
BEIS EPA's Biogenic Emissions Inventory System
BIC Bayesian Information Criterion
CAA Clean Air Act
CAMS Continuous Air Monitoring Stations
CAMx Comprehensive Air Model with Extensions

CARB California Air Resources Board
CMAS Community Modeling & Analysis System
CAP Criteria air pollutant
CB4 Chemical Bond 4
CMAQ Community Multiscale Air Quality model
CMAQ-HAP Community Multiscale Air Quality 

modified for selected HAPs
CDT Central daylight time
CHG Congestive Heart Failure
CO Carbon monoxide
COPD Chronic obstructive pulmonary disease
CST Central standard time 
CTM Chemical transport model
DDM Decoupled direct method
EBI Euler Backward Iterative
EHS Environmental Health Section
EMS-HAP Emissions Modeling System for Hazardous 

Pollutants
EPA U.S. Environmental Protection Agency
ESL Effects Screening Level
FIPS Federal Information Processing Standard
GCS Geographic Coordinate System
GEE Generalized Estimating Equation
GloBEIS Global Biosphere Emissions and 

Interactions System
HAP Hazardous air pollutant
HAPEM Hazardous Air Pollutant Exposure Model
HARC Houston Advanced Research Center
HCHD Harris County Hospital District
HGA Houston-Galveston Area 
HRVOC Highly reactive volatile organic compound
HYSPLIT Hybrid Single-Particle Lagrangian Integrated

Trajectory
ICD-9 International Classification of Diseases, 9th 

revision
IPR Integrated process rate
IRB Institutional Review Board
ISCST Industrial Source Complex Short Term
JCAHO Joint Council on Accreditation of Healthcare

Organizations
LBJ Lyndon B. Johnson hospital
LMM Linear mixed-effects model
LSM Modified Land-Surface Model
LULC Land Use/Land Cover
MCIP Meteorology-Chemistry Interface Processor
MM5 Fifth-Generation National Center for 

Atmospheric Research / Penn Stat 
Mesoscale Model

MOBILE6 EPA's Vehicle Emission Modeling Software,
version 6
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MRF Medium Range Forecast
NAD North American Datum
NATA National-Scale Air Toxic Assessment
NAAQS National Ambient Air Quality Standard
NEI National Emissions Inventory
NMMAPS National Morbidity, Mortality, and Air 

Pollution Study
NO Nitrogen oxide
NO2 Nitrogen dioxide
NOx Nitrogen oxides (NO + NO2)
NOy Total reactive nitrogen
NOAA National Oceanic and Atmospheric 

Administration 
O3 Ozone
PAN Nitric anhydride
PBL Planetary Boundary Layer
PCA Principal Components Analysis
PM2.5 Particulate matter with an aerodynamic 

mass median diameter °‹ 2.5 µm
PM10 Particulate matter with an aerodynamic 

mass median diameter °‹ 10 µm
ppb Parts per billion
ppm Parts per million (volume)
PPM Piecewise Parabolic Method
PPN Peroxypropionic nitric anhydride
PNC Particle number concentration
RAM Gaussian-Plume Multiple Source Air 

Quality Algorithm
REL Reference Exposure Level
RRTM Rapid Radiative Transfer Model
SHEDS Stochastic Human Exposure and Dose 

Simulation
SMOKE Sparse Matrix Operator Kernal Emissions 

Modeling
SAPRC Statewide Air Pollution Research Center 

chemical mechanism
SGV Subgrid variability
SIP State Implementation Plan
SO2 Sulfur dioxide
SPCS State Plane Coordinate System
STAR*Map Southeast Texas Addressing and 

Referencing Map
TCEQ Texas Commission on Environmental 

Quality
TERC Texas Environmental Research Consortium
TexAQS-I Texas Air Quality Study I, 2000
TexAQS-II Texas Air Quality Study II, 2006
THCIC Texas Health Care Information Collection
TDSHS Texas Department of State Health Services
TEI Texas Emissions Inventory

TFS Texas Forest Service
TRI Toxic Release Inventory
UFP Ultrafine particles
UH-IMAQS University of Houston Institute for Multi-

dimensional Air Quality Studies
URL Universal Resource Locator
UTC Coordinated Universal Time
VBA Visual Basic for Applications

69

Winifred J. Hamilton et al





Wilma Delaney R. Bruce LaBoon  (Chair)
Dow Chemical Company (Retired) Locke Lord Bissell & Liddell LLP

Jane L. Delgado Herminia Palacio
National Alliance for Hispanic Health Harris County Public Health and Environmental 

Services

Shawn L. Gerstenberger Monica Samuels
University of Nevada Las Vegas Attorney

John E. Hiatt (Treasurer) John Walke
Quest Diagnostics Inc. Natural Resources Defense Council 

NUATRC STAFF

SCIENTIFIC ADVISORY PANEL

BOARD OF DIRECTORS

Craig Beskid Lata Shirnamé-Moré
President Consulting Staff Scientist

Rebecca Jensen Bruhl Sherry Stevenson
Assistant Staff Scientist Executive Assistant

Debra A. Kaden Carolyn Wade
Consulting Staff Scientist Financial Manager

Ed Avol Harvey Jeffries
University of Southern California University of North Carolina

James J. Collins (Chair) Bertram Price
Dow Chemical Company Price Associates, Inc.

Michael L. Cunningham Nathan Rabinovitch
National Institute of Environmental Health Sciences National Jewish Medical Research Center

George Delclos Anne Rea
University of Texas Houston School of Public Health U.S. Environmental Protection Agency

David H. Garabrant Linda Sheldon
University of Michigan School of Public Health U.S. Environmental Protection Agency

Pertti J. (Bert) Hakkinen (Vice Chair)
National Institutes of Health



P.O. Box 20286 

Houston, Texas  77225-0286 

Tel: 713.500.3450 

Fax: 713.500.0345 

http://www.sph.uth.tmc.edu/mleland/ 

Printed on 100% Recycled Paper 

Authorized by the Clean Air Act Amendments of 1990 (Title III, Section 301/p) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [414.000 630.000]
>> setpagedevice


